Статьи по теме "Тормоза"

Неисправности тормозной системы

Тормозная система требуем к себе самого пристального внимания. Эксплуатация автомобиля с неисправной тормозной системой запрещается. Поэтому каждый автомобилист должен знать основные неисправности тормозной системы и определить их по внешним признакам. В данной статье рассмотрены основные неисправности гидравлической рабочей тормозной системы легкового автомобиля.

В соответствии с конструкцией тормозной системы неисправности условно можно разделить на неисправности тормозного механизма, неисправности тормозного привода и неисправности усилителя тормозов.

Различают следующие неисправности дискового тормозного механизма:

  • износ, повреждение или загрязнение (замасливание) тормозных колодок;
  • износ, деформация, задиры на поверхности тормозных дисков;
  • ослабление крепления, деформация суппорта.

Основные неисправности тормозного привода включают:

  • заедание поршня рабочего цилиндра;
  • утечка тормозной жидкости в рабочем цилиндре;
  • заедание поршня главного цилиндра;
  • утечка тормозной жидкости в главном цилиндре;
  • повреждение или засорение шлангов, трубопроводов;
  • подсос воздуха в системе вследствие ослабления крепления.

Вакуумный усилитель тормозов может иметь следующие неисправности:

  • недостаточное разряжение во впускном коллекторе;
  • повреждение вакуумного шланга;
  • неисправность следящего клапана усилителя.

Все перечисленные неисправности тормозной системы в большей или меньшей степени снижают эффективность торможения автомобиля, поэтому представляют опасность для всех участников движения.

Причинами неисправностей тормозной системы являются:

  • нарушение правил эксплуатации тормозной системы (нарушение периодичности обслуживания, применение некачественной тормозной жидкости);
  • низкое качество комплектующих;
  • предельный срок службы элементов системы;
  • воздействие различных внешних факторов.

О наступлении неисправности тормозной системы свидетельствуют различные отклонения от нормальной работы, т.н. внешние признаки неисправностей, к которым относятся:

  • отклонение от прямолинейного движения при торможении;
  • большой ход педали тормоза;
  • скрежетание при торможении;
  • визг, свист при торможении;
  • снижение усилия на педали при торможении;
  • повышение усилия на педали при торможении;
  • вибрация педали при торможении (не путать с пульсацией педали при работе системы ABS);
  • низкий уровень тормозной жидкости в бачке.

Для облегчения контроля состояния тормозной системы в конструкции автомобиля используются различные датчики. Результаты измерений датчиками параметров системы выводятся в виде сигналов соответствующих ламп на приборной панели, показаний бортового компьютера. На современном автомобиле применяются следующие сигнальные лампы тормозной системы:

  • низкого уровня тормозной жидкости;
  • износа тормозных колодок;
  • неисправности системы ABS;
  • неисправности системы ESP (ASR).

Для установления конкретных неисправностей систем активной безопасности применяется компьютерная диагностика автомобиля.

Внешние признаки и соответствующие им неисправности тормозной системы

Признаки
Неисправности
отклонение от прямолинейного движения при торможении
  • повреждение или загрязнение тормозных колодок с одной стороны;
  • деформация, задиры на поверхности тормозного диска;
  • ослабление крепления, деформация суппорта;
  • заедание поршня рабочего цилиндра;
  • утечка тормозной жидкости в рабочем цилиндре;
  • овреждение или засорение шлангов, трубопроводов;
  • неисправности подвески.
большой ход педали тормоза
  • подсос воздуха в системе;
  • износ тормозных колодок.
скрежетание при торможении
  • предельный износ тормозных колодок;
  • попадание постороннего предмета между колодкой и диском.
визг, свист при торможении
  • износ или загрязнение тормозных колодок;
  • задиры на поверхности тормозного диска.
снижение усилия на педали при торможении
  • подсос воздуха в системе;
  • повреждение или деформация шлангов, трубопроводов;
  • утечка тормозной жидкости в главном цилиндре.
повышение усилия на педали при торможении
  • неисправности вакуумного усилителя тормозов;
  • износ или загрязнение тормозных колодок;
  • заедание поршня рабочего цилиндра.
вибрация педали при торможении
  • износ или деформация тормозного диска;
  • ослабление крепления суппорта;
  • износ ступичных подшипников колес.
низкий уровень тормозной жидкости в бачке
  • утечка тормозной жидкости в главном или рабочих цилиндрах;
  • повреждение шлангов, трубопроводов;
  • износ тормозных колодок.

Система рекуперативного торможения

В современных гибридных автомобилях (полных гибридах, умеренных гибридах, подключаемых гибридах, легких гибридах с системой стоп-старт) используется система рекуперативного торможения. В основу системы положен электрический способ рекуперации кинетической энергии.

Движение автомобиля сопровождается кинетической энергией. При торможении с использованием традиционной тормозной системы избыток кинетической энергии преобразуется в тепловую энергию трения тормозных колодок и тормозного диска и, соответственно, расходуется вхолостую.

В системе рекуперативного торможения для замедления используется электродвигатель, включенный в трансмиссию автомобиля. При торможении электродвигатель начинает работать в генераторном режиме, на валу двигателя создается тормозной момент и вырабатывается электрическая энергия, которая сохраняется в аккумуляторной батарее. Запасенная электрическая энергия используется в дальнейшем для движения автомобиля.

Применение системы рекуперативного торможения обеспечивает максимальную отдачу от каждого заряда аккумуляторной батареи и высокую топливную экономичность. Рекуперативное торможение наиболее эффективно на передней оси автомобиля, т.к. до 70% кинетической энергии при торможении приходится именно на переднюю ось.

Эффективность системы рекуперативного торможения значительно снижается на низких скоростях движения автомобиля. Поэтому для доведения автомобиля до полной остановки используются традиционные фрикционные тормоза. Совместная работа двух систем находится под управлением электроники.

Отдельный электронный блок управления реализует следующие функции:

  • контроль скорости вращения колес;
  • поддержание тормозного момента электродвигателя, необходимого для замедления автомобиля;
  • перераспределение тормозного усилия на фрикционную тормозную систему;
  • поддержание крутящего момента, необходимого для зарядки аккумуляторной батареи.

В данной тормозной системе механическая связь между педалью тормоза и тормозными колодками отсутствует. Решение о торможении принимает электроника на основании анализа действий водителя и характера движения автомобиля.

В работе электронная система рекуперативного торможениявзаимодействует с антиблокировочной системой тормозов, системой распределения тормозных усилий, системой курсовой устойчивости,усилителем экстренного торможения.

Система рекуперации кинетической энергии

Помимо электрического способа рекуперации кинетической энергии существуют и другие способы: механический, гидравлический, пневматический. Самый распространенный из них является механический способ и построенные на его основе система рекуперации кинетической энергии (Kinetic Energy Recovery SystemsKERS). В данной системе кинетическая энергия движущегося автомобиля возвращается при торможении и сохраняется для дальнейшего использования с помощью маховика. В отличие от рекуперативного торможения система KERS не создает тормозной момент.

Маховик включен в трансмиссию автомобиля, вращается в вакуумной камере и при торможении разгоняется до 60000 об/мин. Конструкция обеспечивает сохранение энергии до 600 кДж и передачу мощности до 60 кВт (80 л.с.). Запасенная энергия используется для кратковременного скоростного рывка в движении или при трогании с места.

Система KERS применяется в автоспорте на автомобилях Formula 1 с 2009 года. На автомобилях массового использования применение данной системы только планируется. Ближе всех к серийному применению системы рекуперации кинетической энергии находятся разработки компании Volvo.

Cистему KERS предлагается использовать при движении автомобиля в городском цикле. При торможении двигатель автомобиля выключается, маховик раскручивается и запасает энергию. При трогании с места используется энергия маховика, автомобиль трогается, а двигатель запускается уже в движении.

По заявлениям Volvo применение системы рекуперации кинетической энергии обеспечивает снижение расхода топлива на 20% и сокращение вредных выбросов.

Электромеханический стояночный тормоз

Электромеханический стояночный тормоз (Electromechanical Parking BrakeEPB) является современной конструкций стояночной тормозной системы, в которой используется электромеханический привод тормозных механизмов.

Электромеханический стояночный тормоз выполняет следующиефункции:

  • удержание автомобиля на месте при стоянке;
  • аварийное торможение при движении автомобиля;
  • удержание автомобиля при трогании на подъеме.

Система EPB устанавливается на задние колеса автомобиля. Электромеханический стояночный тормоз имеет следующее общее устройство:

В системе используются штатные тормозные механизмы, конструктивные изменения внесены в рабочие цилиндры.

Тормозной привод устанавливается на суппорте тормозного механизма. Тормозной привод преобразует электрическую энергию бортовой сети в поступательное движение тормозных колодок. Для выполнения возложенных функций привод включает следующие конструктивные элементы:

  • электродвигатель;
  • ременная передача;
  • планетарный редуктор;
  • винтовой привод.

Все элементы находятся в одном корпусе. Вращательное движение электродвигателя через ременную передачу передается на планетарный редуктор. Применение планетарного редуктора обусловлено снижением уровня шума, массы привода, а также существенной экономией пространства. Редуктор осуществляет перемещение винтового привода, который в свою очередь обеспечивает поступательное движение поршня тормозного механизма.

Электронная система управлениястояночным тормозом объединяет:

  • входные датчики;
  • блок управления;
  • исполнительные механизмы.

К входным датчикам относятся кнопка включения тормоза, датчик уклона, датчик педали сцепления. Кнопка включениярасполагается на центральной консоли автомобиля. Датчик уклона интегрирован в блок управления. Датчик педали сцепления расположен на приводе сцепления и фиксирует два параметра – положение и скорость отпускания педали сцепления.

Блок управления преобразует сигналы датчиков в управляющие воздействия на исполнительные устройства. В своей работе блок управления взаимодействует с системой управления двигателем исистемой курсовой устойчивости ESP.

В роли исполнительного механизма системы управления выступает электродвигатель привода.

Принцип работы электромеханического стояночного тормоза

Работа электромеханического стояночного тормоза носит циклический характер: включение – выключение.

Включение стояночного тормоза производится нажатием кнопки на центральной консоли. При этом активируется электродвигатель, который посредством редуктора и винтового привода производит притягивание тормозных колодок к тормозному диску. Тормозной диск жестко фиксируется.

Выключение электромеханического стояночного тормозапроизводится автоматически при трогании автомобиля с места. Предусмотрено выключение тормоза вручную при нажатой педали тормоза. При выключении стояночного тормоза блок управления анализирует следующие параметры:

  • величину уклона;
  • положение педали газа (от блока управления двигателем);
  • положение и скорость отпускания педали сцепления.

Это позволяет производить своевременное выключение стояночного тормоза, в том числе выключение с временной задержкой, предотвращающее откатывание автомобиля при трогании на подъеме.