Статьи по теме "Подвеска"

Как устроена подвеска современного автомобиля

Если Вы попросите двух водителей – обычного и гонщика – объяснить, для чего существует подвеска, возможно, вы получите два разных ответа. Обычный водитель скажет просто: подвеска служит, чтобы Ваши зубы остались целыми и невредимыми при движении по кочкам. Она создана для удобной, комфортной и безопасной езды. Гонщика Ваш вопрос заставит задуматься и он начнет пространно рассуждать о том, что задача подвески заключается в том, чтобы у колес Вашего автомобиля было хорошее сцепление с дорогой, и Вы смогли бы ехать быстрее. То есть подвеска нужна для лучшего управления автомобилем.

Не удивительно? А ведь они оба правы.

Когда комфорт и управление соответствуют дороге На заре автомобилестроения, когда скорости были низкие, и мощность двигателя была ограниченной, действительно, главным делом было достичь комфортабельных условий поездки. Нужно было разработать такой механизм, который бы позволял колесам интенсивно перемещаться вверх и вниз, в то время как кузов автомобиля двигался бы плавно над дорогой. С началом применения пружин, на которые опирался своим весом кузов, конструкторы добились того, что резкие удары, которым подвергался автомобиль на дорогах того времени, были значительно смягчены.

Другая проблема заключалась в том, что пассажиров укачивало (у них появлялась морская болезнь),и это поубавило энтузиазма по отношению к пружинам, спасавшим от толчков. Да, толчков стало меньше. Но они совершались постоянно и все время. Решение заключалось в том, чтобы изобрести какой-то механизм, который выравнивал бы их воздействие. Понадобились многие годы, чтобы разработать этот механизм, пока конструкторы не пришли к современному амортизатору. И хотя по своей конструкции амортизаторы значительно отличаются один от другого, идея амортизатора универсальна: он позволяет подвеске свободно двигаться при попадании колеса в выбоины на дорогу, но предохраняет от чересчур сильных толчков с помощью сопротивления, оказываемого гидравликой. Это сопротивление создается с помощью прокачки жидкости внутри амортизатора через специальные клапаны. При трении образуется тепло, которое затем уносится воздухом.

Современные Технологии
В настоящее время разработана целая наука о создании пружин и амортизаторов. Так, ее стратегией является, например применение азотистого газа под высоким давлением внутри амортизатора, для лучшей работы и контроля, за тем, чтобы сопротивление было в адекватно каждой конкретной ситуации. Даже такая простая вещь, как стабилизатор поперечной устойчивости, тоже применяется на современных автомобилях. Это выгнутый из пружинной стали пруток особой формы, соединяющий рычаги подвески с одной и другой стороны кузова, чтобы уменьшить его крены и колебания. Есть и другие интересные разработки, применение торсионов и гидропневматических устройств в подвесках, однако основной принцип действия остается неизменным - элементы подвески демпфируют и гасят передающиеся от колес усилия на кузов. Все эти системы призваны решать одну основную задачу: дать возможность каждому колесу поглощать воздействие от попадания колеса в ямку с тем, чтобы было комфортно ехать в автомобиле, и он не трясся по дороге.

Разумеется, имеется гораздо больше элементов подвески чем только пружины и амортизаторы. Нельзя допустить того, чтобы колеса прыгали, как сумасшедшие. Нужно какое-то приспособление, чтобы они были четко зафиксированы на шасси и могли бы реагировать на команды, подаваемые водителем при управлении автомобилем даже на самых больших ямах. Применяются самые разнообразные способы для преодоления этого в зависимости от цены автомобиля и того, для каких дорог он спроектирован. Наиболее распространена подвеска рычажного типа, где в зависимости от конструкции имеется один или несколько рычагов, к которым и крепится поворотный кулак и собственно колесо. И можно сказать только одну плохую вещь о подвесках рычажного типа - они занимают чересчур много места в автомобиле, которое можно было бы использовать для увеличения салона или для других целей. Кроме того, это сложные и дорогостоящие системы.

Необходимо также рассмотреть и альтернативные системы. В настоящее время наиболее широкое распространение получили подвески типа Макферсон. Они состоят всего из нескольких деталей, относительно дешевы в изготовлении и занимают в автомобиле мало места. Самый хороший вариант данной системы почти невозможно отличить от подвесок рычажного типа, когда Вы управляете автомобилем. В "БМВ" применяются подвески Макферсона на передних колесах. Вы не услышите, чтобы кто-нибудь пожаловался, что подвеска плохо работает и от этого хуже качество управления.

Так как водителю не нужно управлять задними колесами, то и наблюдается большее разнообразие в дизайне задних подвесок. Система с единым (неразрезным) задним мостом применялась на заре автомобилестроения. Данная технология Каменного Века все еще использовалась повсеместно пару десятилетий тому назад. Ее и сейчас еще Вы сможете обнаружить у некоторых моделей легковых автомобилей, или у многих грузовых автомобилей. Она работает, хотя и вышла из моды. Но когда задние колеса крепятся на одну ось, то при попадание одного колеса в яму, это сразу сказывается и на другом колесе автомобиля. У машин с независимой подвеской колес такие проблемы просто не возникают. В результате - на них комфортнее ездить и ими лучше управлять.

Но если Вы позволите каждому колесу следовать за всеми неровностями на дорожном покрытии независимо друг от друга, то и это будет не совсем удобно. Колеса, которые зависают в воздухе - даже на короткий момент - не смогут помочь водителю выполнить такие операции, как ускорить движение автомобиля, затормозить или сделать поворот. Имея современные двигатели, тормоза и покрышки, которые могут реализовать большую мощность, идея с колесами, отдельно реагирующими моментально на каждую выбоину, не является приемлемой. Даже гипотетический гонщик никогда бы не стал ратовать за эту идею. Не станет этого делать и обычный водитель, потому что и ему понадобится в критической ситуации при движении на плохой дороге срочно затормозить и сделать остановку. В такие моменты соображения о комфорте уходят в сторону и нужно сделать так, чтобы подвеска помогала водителю полностью контролировать движение.

Настройка подвески

С точки зрения «продвинутого» водителя обычная (не спортивная) серийная машина, «свежесошедшая» с конвейера, — это неуклюжий, несмышленый ребенок (да простят меня уважаемые автопроизводители). Ему только предстоит научиться ходить, а точнее, бегать «по-взрослому». Последние слова, помимо того, что являются высшей похвалой в устах истинных спортсменов, означают еще и взвешенное, разумное и предсказуемое поведение, не допускающее досадных (порой болезненных) падений.

Воспитательный процесс тонок — в нем не бывает мелочей, аспектов «второй степени значимости». Однако начальная стадия процесса, в ходе которой в неокрепший организм закладываются основные спортивные ценности, достаточно проста. Как просты и сами ценности: несмотря ни на что твердо стоять на дороге четырьмя колесами, стойко держать любые удары, не кланяться каждому повороту и торможению.

Такой характер вырабатывается несколькими «воспитательными методиками». Можно не упоминать легкие кованые диски большого диаметра и хорошую (!) сверх-низкопрофильную резину. Однако кое-что повторить не вредно. А именно, «великую троицу»: амортизаторы, пружины и стабилизатор поперечной устойчивости.

Для разных автомобилей разные методы, но подход, в принципе, один: амортизаторы — только жестче, пружины — жестче или с прогрессивными характеристиками, стабилизатор — толще и тоже, соответственно, жестче.

Для примера возьмем обычную вазовскую «восьмерку» — до недавнего времени самый популярный спортивный автомобиль в нашей стране, а следовательно, и самый «тюнингуемый». В маленьком отступлении скажем, что пока руководство АвтоВАЗа не озаботится серийным выпуском автомобиля «десятого» семейства с ограниченным количеством дверей (купе или трехдверный хэтчбек), «восьмерка» никому не уступит своего места в хит-параде глубокого тюнинга.

Для правильного «воспитания» ВАЗ-2108 вам понадобятся прежде всего амортизаторы и пружины. Их лучше брать набором — когда они просчитаны друг для друга (и для определенного автомобиля).

Устойчивых наборов не так уж много. Существуют спортивные Monroe и Plaza, рассчитанные для стандартных пружин, но это скорее компромисс, нежели искомое желаемое.

Есть знаменитые Koni Sport с регулировками, но их «родные» пружины Mad не сыскать, как говорится, «днем с огнем и собаками». К тому же набор «Koni + Mad» обойдется владельцу «восьмерки» почти в $700.

Существует более доступный и цивилизованный вариант: не так давно на рынке появились «киты» KW, состоящие из пружин и амортизаторов.

Стабилизатор поперечной устойчивости повышенной жесткости с увеличенным сечением прутка оказывает существенную помощь амортизаторам и пружинам. В критических режимах работы подвески стабилизатор, скручиваясь, не позволяет колесам и кузову жить отдельно друг от друга. От этого в немалой степени зависит управляемость автомобиля. Некоторые экстремалы подобный стабилизатор устанавливают и в заднюю подвеску ВАЗ-2108 — для дальнейшего «обострения» реакций автомобиля.

Когда эти работы позади, отправляемся к специалистам по регулировке углов установки колес. Может, и здесь удастся что-нибудь «поймать» для дальнейшего повышения управляемости? Да. И тут начинается самое интересное.

Следующее предложение написано от лица всех специалистов по «колесной геометрии». Не стоит приезжать на развал с неисправными (изношенными) элементами подвески — нужно сперва заменить их на новые. А так как подвеска не в воздухе висит, а крепится к кузову, то и сам кузов должен быть ровным. В отношении автомобиля слово «ровный» подразумевает, что должна быть соблюдена геометрия всех точек крепления подвески. Иначе разговор о специфических настройках придется отложить до лучших времен.

Если не лезть в дебри науки об углах, минутах и миллиметрах, можно выделить три основных параметра, входящих в обобщенный термин «развал-схождение» — развал колес, схождение колес и кастр (от англ. caster).

Расшифруем

Схождение — это угол между плоскостью колеса и осью симметрии или осью тяги автомобиля. Если колеса «косолапят», заворачиваются внутрь по ходу движения, то схождение будет положительным, если разъезжаются в стороны — отрицательным.

Угол развала колес формируется плоскостью колеса и вертикальной плоскостью. Он считается положительным, если верхняя часть колеса имеет наклон к внутренней стороне («домиком»).

Угол продольного наклона (кастр) образуется вертикалью и проекцией оси рулевого механизма на продольную плоскость автомобиля.

Хороший мастер, через руки которого прошло немало спортивных автомобилей, первым делом постарается выяснить, для каких целей предназначена машина.

Одно дело — соревнования (разного рода любительские «покатушки» в последнее время вошли в моду); в этом случае остается выяснить их специфику (трек, спринт, кольцевые или раллийные гонки) и покрытие трассы (грунт, снег, асфальт). Другое — ежедневные (пусть и динамичные) поездки по городу. В первом случае настройки будут более радикальными, а комфорт и сохранность резины отойдут на второй-третий план.

Будем считать, что нашей «восьмерке» уготована каждодневная служба по доставке хозяина из одной точки пространства в другую с максимальным удовольствием от этого процесса.

При таком варианте специалист первым делом уделит внимание продольному углу наклона — кастру. Производитель рекомендует устанавливать этот параметр на значении +1 градус. «Автора» мы безмерно уважаем, но двинем кастр еще на пару градусов «в плюс», до значения +3 градуса, и насладимся повысившимся стремлением машины к прямолинейному движению. Она так «стоит» на дороге, что на прямом участке можно спокойно отпустить руль и подкурить сигарету, не опасаясь уводов.

Спортсмены ставят себе кастр +5 (благодаря изменению точек крепления опор двигателя и коробки передач), но мы находимся в рамках здравого смысла. А он обычно диктует, что регулярная замена «гранат» — не лучший способ получать удовольствие от обладания автомобилем. Так что +3 для «городского» ВАЗ-2108 — предел.

А вот на «Мерседесах», например, кастр устанавливается на отметке +10-12 градусов, поэтому их крейсерское стремление к прямолинейному движению никем не ставится под сомнение. Задний привод позволяет так «валить» колеса вперед...

Далее мастер обратит внимание на угол развала колес. Стандартное значение для ВАЗ-2108 представляет собой ничего не обещающий «ноль» с допуском 30 минут в любую сторону. Чтобы улучшить поведение машины в поворотах, предлагается увести развал «в минус» до 45 минут (не градусов!).

Обращаясь к опыту спортсменов, нельзя не вспомнить кольцевые автомобили, с колесами, «разваленными» до полного «домика». Оно и не мудрено — угол развала колес на них достигает -6-7°, что позволяет лучше прописывать траекторию (правда, резина при этом выживает только одну гонку).

У нас все не так экстремально, но один негативный аспект присутствует: при интенсивном разгоне ведущие колеса заворачиваются внутрь.

Чтобы понять это на практике, можно предложить любому желающему сесть на велосипед или мотоцикл и попробовать, слегка наклонив аппарат, поехать прямо. Эффект очевиден — «двухколесное» будет упрямо стремиться повернуть в сторону наклона.

Чтобы снизить это стремление, обратимся к последнему параметру — схождению.

Стандартное значение — 0, но мы уже зашли слишком далеко. Необходимо установить схождение в диапазоне +0,5 — +1 мм. Таким образом отрицательное значение развала колес будет отчасти компенсировано положительным значением схождения. Вроде бы, ничего не осталось… Хотя нет — мы пока не трогали заднюю ось.

Для нее в «восьмерке» доступно, по меньшей мере, два параметра — развал и схождение. Предполагается, что наш автомобиль «заряжен на все деньги», стало быть, сзади вместо барабанных тормозов установлены дисковые. Скорее всего, там же появилась и хитрая проставка, позволяющая регулировать развал. Вооруженные этой надеждой, обратимся к цифрам.

На задней оси можно «разгуляться» намного серьезнее, чем на передней, поэтому развал доводится до 1-1,5°. Естественно, «в минус». Так как на заднюю ось действуют те же силы, что и на переднюю (только слабее), этот развал мы компенсируем при помощи схождения +2-4 мм. Для сравнения: на автомобилях BMW (традиционно имеющих задний привод) развал на задней оси составляет -2,5°, а компенсируется это схождением +2 мм.

Вот и подросла наша «восьмерка», а мы и не заметили. Машина побежала быстро, предсказуемо, резко. Она «железнодорожно» придерживается заданной траектории, только бы хватало сцепления колес с асфальтом... И почему в таких местах всегда приходится писать «но»?!

Большой ребенок — большие проблемы. Прежде всего, он требует больше внимания. Для стандартного автомобиля периодичность настройки углов установки колес (при обычной езде, без сильных ударов по подвеске и замены ее деталей) — 10-15 тыс. км пробега. Для «настоящей» машины 10 тыс. км — пожалуй, максимальное расстояние от настройки до настройки.

Можно поездить дольше, но учтем, что установленные параметры являются границей здравого смысла. Поэтому неизбежное изменение настроек (особенно с нашими «как бы дорогами») может отразиться на поведении автомобиля и состоянии резины.

После сильного удара (люк, бордюрный камень) следует цепочка негативных последствий. Если элементы остались целы, то пострадали наши хитрые настройки. Например, кастр может «уйти» всего на 10 минут, а схождение «сбежит» аж на 5 мм!

Следующий неприятный момент — для слабых телом. Крутить руль на месте станет тяжелее, и повинны в этом развал и кастр. Появившийся эффект «избыточной поворачиваемости» (в кавычках, поскольку мы имеем дело с передним приводом) может сыграть злую шутку — автомобиль будет сам нырять в поворот.

Наконец, при подобных настройках снижается выбег машины. То есть при выключенном сцеплении она по инерции пройдет несколько меньше, чем стандартная «сестрица».

Тонкая настройка подвески. Часть 2

В этой статье мы возвращаемся к начатому ранее разговору о настройке гоночного автомобиля.

Прежде чем перейти к самому сложному — настройке подвески, — давайте вспомним основные положения, рассмотренные в предыдущей статье (Тонкая настройка подвески. Часть 1). Перераспределение веса автомобиля снижает сцепление шин с поверхностью трассы. Чем больше загружается одно колесо или пара колес и разгружаются другие, тем меньше суммарное сцепление шин. Величина перераспределения веса зависит от ускорения, действующего на автомобиль, его колесной базы (если речь идет о продольном ускорении при разгоне или торможении) и ширины колеи (при поперечном ускорении в повороте), а также от высоты центра тяжести. Уменьшить перераспределение веса мы не в силах — мы не можем удлинить базу автомобиля, расширить его колею или уменьшить высоту центра тяжести (хотя именно к этому всегда стремятся конструкторы гоночных машин). Но мы можем повлиять на интенсивность перераспределения веса и на скорость, с которой этот вес достигает пятна контакта шины с поверхностью трассы. Именно в этом и заключается главный смысл настройки подвески.

Пружины

Представим, что спереди на нашем автомобиле стоят мягкие пружины. При торможении передок получает дополнительно 200 кг нагрузки и проседает, к примеру, на два сантиметра. Установка более жестких пружин снизит это проседание до одного сантиметра. Но дополнительный вес останется тем же. Изменится только реакция — ход подвески. Если вы хотите вообще исключить проседание передка, то замените пружины на жесткую конструкцию, к примеру, обрезки стальных труб. Клевок при торможении исчезнет вовсе. Но перераспределение веса никуда не денется — на передние колеса будут давить те же самые 200 кг. Следовательно, пружины определяют лишь ход подвески — насколько она сжимается под воздействием дополнительного веса.

Амортизаторы

Назначение амортизаторов — гасить колебания пружин. В «спокойном» состоянии амортизаторы не сопротивляются весу и не поддерживают его, как это делают пружины. Амортизатор сопротивляется либо сжатию, которое его укорачивает, либо растяжению, делающему его длиннее. Когда на подвеску действуют силы, сжимающие пружину подвески, они сжимают и амортизатор. Это называется ходом сжатия. Когда вес возвращается пружиной обратно, длина ее увеличивается, и амортизатор разжимается — это ход отдачи. Общий принцип таков: чем выше скорость движения штока амортизатора, тем больше его сопротивление. У многих гоночных амортизаторов оба хода могут регулироваться как по скорости передачи веса, так и по величине сопротивления.
Если установлен очень мягкий амортизатор, с малым сопротивлением сжатию, то дополнительный вес доходит до шины медленно, почти так же, как если бы амортизатора не было вовсе. Если амортизатор жесткий, то есть сильно сопротивляется сжатию, то дополнительный вес достигнет шины значительно быстрее. При этом часть его, минуя пружину, будет передаваться на шину непосредственно через шток амортизатора. Регулировки амортизаторов не влияют на передающуюся на шину нагрузку или величину хода подвески. Амортизаторы регулируют лишь скорость, с которой дополнительный вес достигает пятна контакта шины с дорогой, и скорость, с которой подвеска сжимается (или разжимается) под действием дополнительного веса.

Стабилизаторы

Многие гоночные машины имеют регулируемые стабилизаторы поперечной устойчивости спереди и сзади. Их регулировка дает примерно такие же результаты, что и регулировка жесткости пружин, — с той лишь разницей, что, в отличие от пружин, стабилизаторы совершенно не влияют на перераспределение веса при ускорении или торможении — они работают только тогда, когда машина кренится в поперечном направлении, то есть в повороте.

Основы правильной настройки

Предположим, что наш воображаемый гоночный автомобиль, выезжающий на трассу, весит 1000 кг. При этом 400 кг приходятся на переднюю ось и 600 кг — на заднюю. Этот вес распределяется равномерно между его правой и левой половинами (см. рис. 1). Представим, что под влиянием силы в 1g, действующей на автомобиль в повороте, 200 кг веса перераспределятся от внутренних колес к внешним (рис. 2), которые получат 700 кг вертикальной нагрузки. Главный вопрос — какое колесо (переднее или заднее) получит большую часть дополнительной нагрузки. Ее величину можно варьировать регулировкой жесткости пружин или стабилизаторов поперечной устойчивости.

Чтобы показать, как жесткость пружин влияет на баланс веса автомобиля в повороте, рассмотрим экстремальные ситуации. Предположим, что передняя подвеска отсутствует, и колеса прикручены прямо к кузову (рис. 3). В этом случае вся дополнительная нагрузка сразу придет на внешнее переднее колесо. Из-за слишком быстрого перераспределения веса передняя ось заскользит — автомобиль проявит недостаточную поворачиваемость. Теперь вернем амортизаторы и переднюю подвеску на место и устраним заднюю. В этом случае весь дополнительный вес мгновенно загрузит внешнее заднее колесо, что тут же вызовет избыточную поворачиваемость.
Делаем вывод: снижая жесткость передних пружин, мы меняем баланс поворачиваемости от недостаточной к нейтральной. Более жесткие пружины задней подвески увеличивают тенденцию к избыточной поворачиваемости, а более мягкие — работают в противоположном направлении. Казалось бы, чем мягче пружины (и стабилизаторы), тем медленнее перераспределяется вес и, следовательно, выше сцепление в повороте. Но, стремясь сделать автомобиль как можно мягче, многие приходят в конце концов к прямо противоположному результату — сцепление падает. Конструкции подвесок на разных автомобилях различные, и главное ограничение подобных регулировок — это максимально допустимые значения крена кузова. При их превышении геометрия подвесок меняется, и пятно контакта шины может уменьшиться, а значит, уменьшится и сцепление. Таким образом, на деле все оказывается значительно сложнее, чем в теории. На трассах с неровным покрытием всегда лучше выбрать более мягкую регулировку. Объясняется это тем, что перераспределение веса не будет слишком резким (на сжатие более мягкой подвески по требуется больше времени), а значит, баланс автомобиля будет меняться более плавно. При же сткой подвеске машина будет хуже управляться, так как перераспределение веса будет происхо дить рывками.

Настройка амортизаторов влияет на управляемость автомобиля в повороте в очень короткий отрезок времени — только в момент изменения направления движения. Как только перераспределенный вес стабилизировался, пружины и стабилизаторы начинают влиять на баланс в большей степени, чем амортизаторы. Например, если передние амортизаторы намного жестче на сжатие, чем задние, внешнее переднее колесо может быть значительно перегружено по отношению к заднему, что вызовет сильную недостаточную поворачиваемость на входе в поворот. Как только дополнительное сопротивление подвески выровняется, стабилизаторы и пружины восстановят необходимый баланс автомобиля. При стремительном перераспределении веса настройка амортизаторов очень важна. Особенно это относится к таким поворотам, в которых скорость входа и скорость прохождения апекса сильно различаются. В медленном крутом повороте перераспределение веса происходит очень быстро.

Не будем рассматривать все возможные примеры. Вариантов настройки великое множество. Например, изменить недостаточную поворачиваемость на избыточную можно регулировкой углов установки задних колес. Тонкая настройка — всегда компромисс. Всем знакомы объяснения пилотов или менеджеров команд Формулы-1 после неудачно проведенного уик-энда. Чаще всего сетуют на то, что гоночный болид страдал недостаточной поворачиваемостью. Какой уж там мощный разгон из поворота на прямую, если машина норовит «пропихнуть нос» наружу и вы лететь за пределы трассы! Инженеры Формулы-1 ведут нескончаемую борьбу за постоянно ускользающую нейтральную поворачиваемость. Машина должна быть максимально послушной и адекватно реагировать на прибавление газа, когда она скользит всеми четырьмя колесами. Для гонок на американских овалах лучшей оказывается небольшая недостаточная поворачиваемость, которая делает езду по дуге с максимальной скоростью относительно безопасной. Переднеприводные машины, как правило, страдают недостаточной поворачиваемостью, и гонщики, выступающие на них, изо всех сил стараются свести ее регулировками к избыточной, чтобы автомобиль лучше заезжал в поворот. Примеры можно продолжать. Главное — понять самый важный принцип: на поведение гоночного автомобиля в первую очередь влияет перераспределение веса. Характер движения автомобиля по трассе в каждый конкретный момент времени зависит от того, насколько загружено каждое из его колес.

Тесты

Правильно протестировать гоночную машину — непростое дело. Многие пилоты так увлекаются экспериментами с регулировками, что забывают некоторые прописные истины. Главная из них — никогда не менять несколько параметров настройки сразу. При таком раскладе будет невозможно установить истинную причину улучшения или ухудшения поведения автомобиля. Второй очень важный вопрос — это честность и откровенность самого гонщика. Когда из-за ошибок в пилотировании время прохождения круга нестабильно, легче всего утешаться тем, что плохой результат— причина неверной настройки, и тут же пробовать другие варианты. Это чистый абсурд, который никогда не приведет к хорошему результату.
Вот что по этому поводу говорит Ники Лауда. «Чтобы установить, как то или иное усовершенствование влияет на управляемость, необходимо достичь стабильного времени прохождения круга. Вот типичный пример: 1:15.0—1:14,0— 1:13,9—1:13,7 — 1:13,6 — 1:13,6—1:13,6 — 1:13,6. Только после этого я могу сделать перерыв и начать пробовать другой вариант. Важно уметь вернуться к уже испробованному варианту, если последующие оказались хуже. Очень многое зависит от исследовательского таланта гонщика, ведь стремлением во что бы то ни стало проехать максимально быстро можно «заездить» проблему — она как бы перестанет существовать, поскольку разница в долях секунды исчезнет».

С другой стороны, существует множество ситуаций, когда искать оптимальные варианты настроек вообще неразумно. Например, на новой, незнакомой трассе или при ограниченном времени свободных тренировок. В такой ситуации гонщик должен уметь приспособиться к поведению автомобиля. Стиль его вождения должен максимально сглаживать неоптимальную настройку машины. Это вообще важно, поскольку невозможно настроить гоночный автомобиль идеально для всех поворотов одной трассы. Компромиссным, но единственно правильным решением будет оптимальная настройка для самых важных поворотов, обеспечивающих максимальный выигрыш во времени. Разница между реальностью и мифом, о которой говорилось в начале статьи, как раз и кроется в умении найти правильный компромисс для каждой конкретной ситуации. Настройка — дело тонкое!

Статьи по теме