Статьи по теме "Подвеска"

Привод сцепления

Привод сцепления предназначен для обеспечения выключения сцепления, а именно отжимания диафрагменной пружины. На современных автомобилях применяются приводы сцепления следующих видов:

  • механический привод;
  • гидравлический привод;
  • электрогидравлический привод.

Наибольшее применение в автомобиле нашли механический и гидравлический приводы сцепления. Электрогидравлический привод используется для автоматизации управления сцеплением вроботизированной коробке передач, например, в коробке передач Easytronic.

Механический привод сцепления

Механический привод используется в качестве привода сцепления небольших легковых автомобилей. Данный вид привода отличает простота конструкции и невысокая стоимость.

 

Механический привод сцепления имеет следующее устройство:

  • педаль сцепления;
  • трос привода сцепления;
  • механизм регулирования свободного хода педали сцепления;
  • рычажная передача.

Схема механического привода сцепления

Основным конструктивным элементом механического привода сцепления является трос, который соединяет педаль сцепления с вилкой выключения. Трос заключен в оболочку. При нажатии на педаль сцепления усилие через трос передается на рычажную передачу, которая в свою очередь перемещает вилку сцепления и обеспечивает выключение сцепления.

В системе предусмотрен механизм регулирования свободного хода педали сцепления, включающий регулировочную гайку на конце троса. Необходимость регулировки обусловлена постепенным изменением положения педали сцепления вследствие износа фрикционных накладок.

Гидравлический привод сцепления

Гидравлический привод сцепления по конструкции аналогичен гидравлическому приводу тормозной системы. В нем используется свойство несжимаемости жидкости. В качестве рабочей жидкости применяется тормозная жидкость.

 

Гидравлический привод сцепления имеет следующее устройство:

  • педаль сцепления;
  • главный цилиндр привода сцепления;
  • бачек рабочей жидкости;
  • рабочий цилиндр привода сцепления;
  • соединительные трубопроводы.

Схема гидравлического привода сцепления

Конструктивно главный и рабочий цилиндры состоят из поршня с толкателем, размещенных в корпусе. При нажатии на педаль сцепления толкатель перемещает поршень главного цилиндра, происходит отсечка рабочей жидкости от бачка. При дальнейшем движении поршня рабочая жидкость по трубопроводу поступает в рабочий цилиндр. Под воздействием жидкости происходит движение поршня с толкателем. Толкатель воздействует на вилку сцепления и обеспечивает выключение сцепления.

Для удаления воздуха из системы гидропривода сцепления (прокачки системы) на главном и рабочем цилиндрах установлены специальные клапаны (штуцеры).

Для облегчения управления на некоторых моделях автомобилей используются пневматический или вакуумный усилитель привода сцепления.

Сцепление

Сцепление является важным конструктивным элементом трансмиссии автомобиля. Сцепление предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при переключении передач, а также предохранения элементов трансмиссии от перегрузок и гашения колебаний. Сцепление автомобиля располагается между двигателем и коробкой передач.

В зависимости от конструкции различают следующие типы сцепления:

  • фрикционное сцепление;
  • гидравлическое сцепление;
  • электромагнитное сцепление.

Фрикционное сцепление передает крутящий момент за счет сил трения. В гидравлическом сцеплении связь обеспечивается за счет потока жидкости. Электромагнитное сцепление управляется магнитным полем.

Самым распространенным типом сцепления является фрикционное сцепление. Различает следующие виды фрикционного сцепления:

  • однодисковое сцепление;
  • двухдисковое сцепление;
  • многодисковое сцепление.

В зависимости от состояния поверхности трения сцепление может быть сухое и мокрое. В сухом сцеплении используется сухое трение между дисками. Мокрое сцепление предполагает работы дисков в жидкости.

На современных автомобилях устанавливается в основном сухое однодисковое сцепление. Однодисковое сцепление имеет следующее устройство:

  • маховик;
  • картер сцепления;
  • нажимной диск;
  • ведомый диск;
  • диафрагменная пружина;
  • подшипник выключения сцепления;
  • муфта выключения;
  • вилка сцепления.

Схема однодискового сцепления

Маховик устанавливается на коленчатом вале двигателя. Он выполняет роль ведущего диска сцепления . На современных автомобилях применяется, как правило, двухмассовый маховик. Такой маховик состоит из двух частей, соединенных пружинами. Одна часть соединена с коленчатым валом, другая - с ведомым диском. Конструкция двухмассового маховика обеспечивает сглаживание рывков и вибраций коленчатого вала. В картере сцепления размещаются конструктивные элементы сцепления. Картер сцепления крепиться болтами к двигателю.

Нажимной диск прижимает ведомый диск к маховику и при необходимости освобождает его от давления. Нажимной диск соединен с корпусом (кожухом) с помощью тангенциальных пластинчатых пружин. Тангенциальные пружины, при выключении сцепления, выполняют роль возвратных пружин.

На нажимной диск воздействует диафрагменная пружина, обеспечивающая необходимое усилие сжатия для передачи крутящего момента. Диафрагменная пружина наружным диаметром опирается на края нажимного диска. Внутренний диаметр пружины представлен упругими металлическими лепестками, на концы которых воздействует подшипник выключения сцепления. Диафрагменная пружина закреплена в корпусе. Для закрепления используются распорные болты или опорные кольца.

Нажимной диск, диафрагменная пружина и корпус образуют единый конструктивный блок, который носит устоявшееся названиекорзина сцепления. Корзина сцепления имеет жесткое болтовое соединение с маховиком. По характеру работы различают два типа корзин сцепления - нажимного и вытяжного действия. В распространенной корзине сцепления нажимного действия лепестки диафрагменной пружины при выключении сцепления перемещаются к маховику. В вытяжной корзине сцепления наоборот - лепестки диафрагменной пружины перемещаются от маховика. Данный тип корзины сцепления характеризуется минимальной толщиной, поэтому применяется в стесненных условиях.

Ведомый диск располагается между маховиком и нажимным диском. Ступица ведомого диска соединяется шлицами с первичным валом коробки передач и может перемещаться по ним. Для обеспечения плавности включения сцепления в ступице ведомого диска размещены демпферные пружины, выполняющие роль гасителя крутильных колебаний.

На ведомом диске с двух сторон установлены фрикционные накладки. Накладки изготавливаются из стеклянных волокон, медной и латунной проволоки, которые запрессованы в смесь из смолы и каучука. Такой состав может кратковременно выдерживать температуру до 400°С. Накладки ведомого диска могут иметь и более высокую тепловую характеристику. На спортивных автомобилях устанавливают т.н. керамическое сцепление, накладки ведомого диска которого состоят из керамики, кевлара и углеродного волокна. Еще более прочные металлокерамические накладки, выдерживающие температуру до 600°С.

Подшипник выключения сцепления (обиходное название - выжимной подшипник) является передаточным устройством между сцеплением и приводом. Он располагается на оси вращения сцепления и непосредственно воздействует на лепестки диафрагменной пружины. Подшипник располагается на муфте выключения. Перемещение муфты с подшипником обеспечивает вилка сцепления.

Схема двухдискового сцепления

На грузовых и легковых автомобилях с мощным двигателем применяется двухдисковое сцепление. Двухдисковое сцепление осуществляет передачу большего крутящего момента при неизменном размере, а также обеспечивает больший ресурс конструкции. Это достигнуто за счет применения двух ведомых дисков, между которыми установлена проставка. В результате получены четыре поверхности трения.

Принцип работы сцепления

Однодисковое сухое сцепление постоянно включено. Работу сцепления обеспечивает привод сцепления.

При нажатии на педаль сцепления привод сцепления перемещает вилку сцепления, которая воздействует на подшипник сцепления. Подшипник нажимает на лепестки диафрагменной пружины нажимного диска. Лепестки диафрагменной пружины прогибаются в сторону маховика, а наружный край пружина отходит от нажимного диска, освобождая его. При этом тангенциальные пружины отжимают нажимной диск. Передача крутящего момента от двигателя к коробке передач прекращается.

При отпускании педали сцепления диафрагменная пружина приводит нажимной диск в контакт с ведомым диском и через него в контакт с маховиком. Крутящий момент за счет сил трения передается от двигателя к коробке передач.

Блокировка дифференциала

Особенностью работы свободного дифференциала является то, что при пробуксовке одного колеса (ведущей оси) на другое передается крутящий момент, недостаточный для движения. Блокировка дифференциала предназначена для увеличения крутящего момента на колесе (оси) с лучшим сцеплением.

Для того, чтобы заблокировать дифференциал необходимо выполнить одно из двух действий:

  • соединить корпус дифференциала с одной их полуосей;
  • ограничить вращение сателлитов.

В зависимости от степени блокирования блокировка дифференциала бывает:

  • полной;
  • частичной.

Полная блокировка дифференциала предполагает жесткое соединение частей дифференциала, при котором крутящий момент может полностью передаваться на колесо с лучшим сцеплением.

Частичная блокировка дифференциала характеризуется ограниченной величиной передаваемого усилия между частями дифференциала и соответствующего ей увеличения крутящего момента на колесе с лучшим сцеплением.

Величина повышения крутящего момента на свободном колесе оценивается коэффициентом блокировки. Другими словами,коэффициент блокировки выражает отношение крутящего момента на отстающем (свободном) колесе к моменту на забегающем (буксующем) колесе. Для симметричного свободного дифференциала коэффициент блокировки 1, т.к. крутящие моменты на каждом из колес всегда равны. В заблокированном дифференциале коэффициент блокировки может находится в пределе 3-5. Дальнейшее увеличение коэффициента блокировки нежелательно, т.к. может привести к поломке элементов трансмиссии.

Блокировка дифференциала применяется как на межколесных дифференциалах, так и на межосевых дифференциалах. Блокировка переднего межколесного дифференциала полноприводного автомобиля обычно не производится, чтобы не снижать управляемость.

Блокировка дифференциала может осуществляться принудительно и автоматически. Принудительная блокировка дифференциала производится по команде водителя, поэтому другое ее название ручная блокировкаАвтоматическая блокировка дифференциала выполняется с помощью специальных технических устройств – самоблокирующихся дифференциалов.

Принудительная блокировка дифференциала

Принудительная блокировка дифференциала производится, как правило, с помощью кулачковой муфты, обеспечивающей жесткое соединение корпуса дифференциала и одной из полуосей.

Замыкание (размыкание) кулачковой муфты производится с помощью механического, электрического, гидравлического или пневматического привода.

Механический привод объединяет рычаг и тросы или систему рычагов. Блокировка дифференциала производится водителем путем перемещения рычага в определенное положение на неподвижном автомобиле.

Гидравлический привод блокировки дифференциала включает главный и рабочий цилиндры. Исполнительным элементомпневматического привода является пневмоцилиндр (пневмокамера). В электрическом приводе для замыкания муфты используется электродвигатель. Включение блокировки дифференциала (инициация привода) производится путем нажатия соответствующей кнопки на панели приборов.

Жесткая принудительная блокировка применяется для преодоления автомобилем труднопроходимых участков, а при их прохождении обязательно выключается. Применяется в межколесных и межосевых дифференциалах полноприводных автомобилей.

Самоблокирующийся дифференциал

Самоблокирующийся дифференциал (другое название –дифференциал повышенного трения, Limited Slip Differential, LSD) по своей сути является компромиссом между свободным дифференциалом и полной блокировкой дифференциала, т.к. позволяет реализовать при необходимости возможности и того и другого.

Различают два вида самоблокирующихся дифференциалов:

  • дифференциалы, блокирующиеся от разности угловых скоростей колес;
  • дифференциалы, блокирующиеся от разности крутящих моментов.

К первым относятся дисковый дифференциал, дифференциал с вязкостной муфтой, а также т.н. электронная блокировка дифференциала. Блокируется в зависимости от разности крутящих моментов червячный дифференциал.

Простейший дисковый дифференциал представляет собой симметричный дифференциал, в который добавлены один или два пакета фрикционных дисков. Часть фрикционных дисков жестко связана с корпусом дифференциала, другая часть – с полуосью.

Принцип действия дифференциала повышенного трения дискового типа основан на силе трения, возникающей вследствие разности скоростей вращения полуосей.

При прямолинейном движении корпус дифференциала и полуоси вращаются с одинаковой скоростью, фрикционный пакет вращается как единое целое. При увеличении частоты вращения одной их полуосей, соответствующая ей часть дисков в пакете начинает вращаться быстрее. При этом между дисками возникает сила трения, препятствующая увеличению частоты вращения. Крутящий момент на свободном колесе увеличивается, чем достигается частичная блокировка дифференциала.

Степень сжатия фрикционных дисков может быть фиксированной (реализуется с помощью пружин постоянной жесткости) или переменной (осуществляется с помощью гидравлического привода, в т.ч. с электронным управлением).

Дисковый дифференциал LSD применяется в качестве межколесного дифференциала спортивных автомобилей, а также межосевого дифференциала автомобилей повышенной проходимости.

Вязкостная муфта (другое наименование – вискомуфта) представляет собой набор близко расположенных друг к другу перфорированных дисков, часть из которых жестко соединяется с корпусом дифференциала, другая часть – с приводным валом. Диски помещены в герметичный корпус, заполненный силиконовой жидкостью высокой вязкости.

Схема вязкостной муфты

При вращении корпуса дифференциала и приводного вала с одной скоростью блок перфорированных дисков вращается как одно целое. При увеличении скорости вращения приводного вала, соответствующая ему часть дисков начинает вращаться быстрее и перемешивает силиконовую жидкость. Жидкость твердеет, дифференциал блокируется. На другом приводном валу происходит увеличение крутящего момента. При восстановлении равенства скоростей жидкость теряет свои свойства и муфта разблокируется.

В связи с большим геометрическим размером вискомуфта применяется, как правило, для блокировки межосевого дифференциала. Вязкостная муфта также может использоваться и самостоятельно (вместо межосевого дифференциала) в системе полного привода, подключаемого автоматически.

В силу своей конструкции вискомуфта обладает инерционностью, склонна к нагреву и при торможении конфликтует с антиблокировочной системой тормозов, поэтому в настоящее время на автомобили практически не устанавливается.

Электронная блокировка дифференциала (или просто электронный дифференциал) является функцией антипробуксовочной системы. Реализуется путем автоматического подтормаживания буксующего колеса, сопровождаемого увеличением на нем силы тяги. Соответственно на колесе с лучшим сцеплением увеличивается крутящий момент.

Червячный самоблокирующийся дифференциал обеспечивает автоматическую блокировку в зависимости от разности крутящих моментов на корпусе и полуоси (приводном вале). При проскальзывании колеса, сопровождаемом падением крутящего момента, червячный дифференциал блокируется и перераспределяет крутящий момент на свободное колесо. Блокировка при этом частичная, а ее степень зависит от величины падения крутящего момента.

Известными конструкциями червячных дифференциалов являются дифференциал Torsen (от сокращенного Torque Sensing - чувствительный к крутящему моменту) и дифференциал Quaife. Конструкции данных дифференциалов представляют собой планетарный редуктор, состоящий из червячных шестерен: ведомых (полуосевых) и ведущих (сателлитов). Сателлиты могут располагаться параллельно полуосям (Quaife, Torsen Т-2) или перпендикулярно полуосям (Torsen Т-1).

Схема дифференциала Torsen

Особенностью червячной шестерни является то, что она может приводить во вращение другие шестерни, а сама не может вращаться от других шестерен. При этом говорят, червячная шестерня расклинивается. Данное свойство используется для частичной блокировки червячного дифференциала.

Червячные самоблокирующиеся дифференциалы широко применяются как в качестве межколесных, так и межосевых дифференциалов.

Статьи по теме