Главная · Двигатель · Условный экстремум

Условный экстремум

Пример

Найти экстремум функции при условии, чтох и у связаны соотношением: . Геометрически задача означает следующее: на эллипсе
плоскостью
.

Эту задачу можно решать так: из уравнения
находим
х :


при условии, что
, свелась к задаче нахождения экстремума функции одной переменной, на отрезке
.

Геометрически задача означает следующее: на эллипсе , полученном при пересечении цилиндра
плоскостью
, требуется найти максимальное или минимальное значение аппликаты(рис.9). Эту задачу можно решать так: из уравнения
находим
. Подставляя найденное значение у в уравнение плоскости, получаем функцию одной переменнойх :

Тем самым задача о нахождении экстремума функции
при условии, что
, свелась к задаче нахождения экстремума функции одной переменной, на отрезке.

Итак, задача отыскания условного экстремума – это задача о нахождении экстремума целевой функции
, при условии, что переменныех и у подчиняются ограничению
, называемомууравнением связи.

Будем говорить, что точка
, удовлетворяющая уравнению связи,является точкой локального условного максимума (минимума ), если существует окрестность
такая, что для любых точек
, координаты которых удовлетворяют уравнению связи, выполнено неравенство.

Если из уравнения связи можно найти выражение для у , то, подставляя это выражение в исходную функцию, превращаем последнюю в сложную функцию одной переменной х.

Общим методом решения задачи на условный экстремум является метод множителей Лагранжа . Составим вспомогательную функцию, где─ некоторое число. Это функция называетсяфункцией Лагранжа , а ─ множителем Лагранжа. Таким образом, задача нахождения условного экстремума свелась к нахождению точек локального экстремума для функции Лагранжа. Для нахождения точек возможного экстремума надо решить систему из 3-х уравнений с тремя неизвестнымих, у и.

Затем следует воспользоваться следующим достаточным условием экстремума.

ТЕОРЕМА . Пусть точка является точкой возможного экстремума для функции Лагранжа. Предположим, что в окрестности точки
существуют непрерывные частные производные второго порядка функцийи. Обозначим

Тогда, если
, то
─ точка условного экстремума функции
при уравнении связи
при этом, если
, то
─ точка условного минимума, если
, то
─ точка условного максимума.

§8. Градиент и производная по направлению

Пусть функция
определена в некоторой (открытой) области. Рассмотрим любую точку
этой области и любую направленную прямую (ось), проходящую через эту точку (рис. 1). Пусть
– какая-нибудь другая точка этой оси,
­– длина отрезка между
и
, взятая со знаком «плюс», если направление
совпадает с направлением оси, и со знаком «минус», если их направления противоположны.

Пусть
неограниченно приближается к
. Предел

называется производной от функции
по направлению
(или вдоль оси) и обозначается следующим образом:

.

Эта производная характеризует «скорость изменения» функции в точке
по направлению. В частности, и обычные частные производные,также можно рассматривать как производные «по направлению».

Предположим теперь, что функция
имеет в рассматриваемой области непрерывные частные производные. Пусть осьобразует с осями координат углы
и. При сделанных предположениях производная по направлениюсуществует и выражается формулой

.

Если вектор
задан своими координатами
, то производную функции
по направлению вектора
можно вычислить по формуле:

.

Вектор с координатами
называетсявектором-градиентом функции
в точке
. Вектор-градиент указывает направление наиболее быстрого возрастания функции в данной точке.

Пример

Дана функция , точка A(1, 1) и вектор
. Найти: 1)grad z в точке A; 2) производную в точке A по направлению вектора .

Частные производные данной функции в точке
:

;
.

Тогда вектор-градиент функции в этой точке:
. Вектор-градиент еще можно записать с помощью разложения по векторами:

. Производная функции по направлению вектора:

Итак,
,
.◄

Условный экстремум.

Экстремумы функции нескольких переменных

Метод наименьших квадратов.

Локальный экстремум ФНП

Пусть дана функция и = f (Р), РÎDÌR n и пусть точка Р 0 (а 1 , а 2 , ..., а п ) –внутренняя точка множества D.

Определение 9.4.

1) Точка Р 0 называется точкой максимума функции и = f (Р), если существует окрестность этой точки U(P 0) Ì D такая, что для любой точки Р(х 1 , х 2 , ..., х п )Î U(P 0) , Р¹Р 0 , выполняется условие f (P) £ f (P 0) . Значение f (P 0) функции в точке максимума называется максимумом функции и обозначается f (P 0) = max f (P) .

2) Точка Р 0 называется точкой минимума функции и = f (Р), если существует окрестность этой точки U(P 0)Ì D такая, что для любой точки Р(х 1 , х 2 , ..., х п )ÎU(P 0), Р¹Р 0 , выполняется условие f (P) ³ f (P 0) . Значение f (P 0) функции в точке минимума называется минимумом функции и обозначается f (P 0) = min f (P).

Точки минимума и максимума функции называются точками экстремумов , значения функции в точках экстремумов называются экстремумами функции.

Как следует из определения, неравенства f (P) £ f (P 0) , f (P) ³ f (P 0) должны выполняться только в некоторой окрестности точки Р 0 , а не во всей области определения функции, значит, функция может иметь несколько однотипных экстремумов (несколько минимумов, несколько максимумов). Поэтому определенные выше экстремумы называют локальными (местными) экстремумами.

Теорема 9.1.(необходимое условие экстремума ФНП)

Если функция и = f (х 1 , х 2 , ..., х п ) имеет экстремум в точке Р 0 , то ее частные производные первого порядка в этой точке либо равны нулю, либо не существуют.

Доказательство. Пусть в точке Р 0 (а 1 , а 2 , ..., а п ) функция и = f (P) имеет экстремум, например, максимум. Зафиксируем аргументы х 2 , ..., х п , положив х 2 =а 2 ,..., х п = а п . Тогда и = f (P) = f 1 ((х 1 , а 2 , ..., а п ) есть функция одной переменной х 1 . Так как эта функция имеет при х 1 = а 1 экстремум (максимум), то f 1 ¢=0или не существует при х 1 =а 1 (необходимое условие существования экстремума функции одной переменной). Но , значит или не существует в точке Р 0 – точке экстремума. Аналогично можно рассмотреть частные производные по остальным переменным. ЧТД.

Точки области определения функции, в которых частные производные первого порядка равны нулю или не существуют, называются критическими точками этой функции.

Как следует из теоремы 9.1, точки экстремума ФНП следует искать среди критических точек функции. Но, как и для функции одной переменной, не всякая критическая точка является точкой экстремума.

Теорема 9.2.(достаточное условие экстремума ФНП)

Пусть Р 0 – критическая точка функции и = f (P) и – дифференциал второго порядка этой функции. Тогда

а) если d 2 u (P 0) > 0 при , то Р 0 – точка минимума функции и = f (P);

б) если d 2 u (P 0) < 0 при , то Р 0 – точка максимума функции и = f (P);

в) если d 2 u (P 0) не определен по знаку, то Р 0 не является точкой экстремума;

Эту теорему рассмотрим без доказательства.

Заметим, что в теореме не рассмотрен случай, когда d 2 u (P 0) = 0 или не существует. Это означает, что вопрос о наличие экстремума в точке Р 0 при таких условиях остается открытым – нужны дополнительные исследования, например, исследование приращения функции в этой точке.

В более подробных курсах математики доказывается, что в частности для функции z = f (x , y ) двух переменных, дифференциал второго порядка которой есть сумма вида

исследование наличия экстремума в критической точке Р 0 можно упростить.

Обозначим , , . Составим определитель

.

Оказывается:

d 2 z > 0 в точке Р 0 , т.е. Р 0 – точка минимума, если A (P 0) > 0 и D(Р 0) > 0;

d 2 z < 0 в точке Р 0 , т.е. Р 0 – точка максимума, если A (P 0) < 0 , а D(Р 0) > 0;

если D(Р 0) < 0, то d 2 z в окрестности точки Р 0 меняет знак и экстремума в точке Р 0 нет;

если же D(Р 0) = 0, то также требуются дополнительные исследования функции в окрестности критической точки Р 0 .

Таким образом, для функции z = f (x , y ) двух переменных имеем следующий алгоритм (назовем его «алгоритмом D») отыскания экстремума:

1) Найти область определения D(f ) функции.

2) Найти критические точки, т.е. точки из D(f ), для которых и равны нулю или не существуют.

3) В каждой критической точке Р 0 проверить достаточные условия экстремума. Для этого найти , где , , и вычислить D(Р 0) и А (Р 0).Тогда:

если D(Р 0) >0 , то в точке Р 0 есть экстремум, причем, если А (Р 0) > 0 – то это минимум, а если А (Р 0) < 0 – максимум;

если D(Р 0) < 0, то в точке Р­ 0 нет экстремума;

Если D(Р 0) = 0, то нужны дополнительные исследования.

4) В найденных точках экстремума вычислить значение функции.

Пример1.

Найти экстремум функции z = x 3 + 8y 3 – 3xy .

Решение. Область определения этой функции – вся координатная плоскость. Найдем критические точки.

, , Þ Р 0 (0,0) , .

Проверим выполнение достаточных условий экстремума. Найдем

6х , = -3, = 48у и = 288ху­ – 9.

Тогда D(Р 0) = 288×0×0 – 9 = -9< 0 , значит, в точке Р 0 экстремума нет.

D(Р 1) = 36-9>0 – в точке Р 1 есть экстремум, а так как А (Р 1) = 3 >0, то этот экстремум – минимум. Значит, min z = z (P 1) = .

Пример 2.

Найти экстремум функции .

Решение: D(f ) =R 2 . Критические точки: ; не существует при у = 0, значит Р 0 (0,0) – критическая точка данной функции.

2, = 0, = , = , но D(Р 0) не определено, поэтому исследование его знака невозможно.

По этой же причине невозможно применить теорему 9.2 непосредственно – d 2 z в этой точке не существует.

Рассмотрим приращение функции f (x , y ) в точке Р 0 . Если Df =f (P) – f (P 0)>0 " Р, то Р 0 точка минимума, если же Df < 0, то Р 0 – точка максимума.

Имеем в нашем случае

Df = f (x , y ) – f (0, 0) = f (0+Dx ,0+Dy ) – f (0, 0) = .

При Dx = 0,1 и Dy = -0,008 получим Df = 0,01 – 0,2 < 0, а при Dx = 0,1 и Dy = 0,001 Df = 0,01 + 0,1 > 0, т.е. в окрестности точки Р 0 не выполняются ни условие Df <0 (т.е. f (x , y ) < f (0, 0) и значит, Р 0 – не точка максимума), ни условие Df >0 (т.е. f (x , y ) > f (0, 0) и тогда Р 0 – не точка минимума). Значит, по определению экстремума, данная функция экстремумов не имеет.

Условный экстремум.

Рассмотренный экстремум функции называют безусловным , так как на аргументы функции не налагаются никакие ограничения (условия).

Определение 9.2. Экстремум функции и = f (х 1 , х 2 , ... , х п ), найденный при условии, что ее аргументы х 1 , х 2 , ... , х п удовлетворяют уравнениям j 1 (х 1 , х 2 , ... , х п ) = 0, …, j т (х 1 , х 2 , ... , х п ) = 0, где P (х 1 , х 2 , ... , х п ) Î D(f ), называется условным экстремумом .

Уравнения j k (х 1 , х 2 , ... , х п ) = 0 , k = 1, 2,..., m , называются уравнениями связи .

Рассмотрим функции z = f (x , y ) двух переменных. Если уравнение связи одно, т.е. , то отыскание условного экстремума означает, что экстремум ищется не во всей области определения функции, а на некоторой кривой , лежащей в D(f ) (т.е. ищутся не самые высокие или самые низкие точки поверхности z = f (x , y ), а наиболее высокие или низкие точки среди точек пересечения этой поверхности с цилиндром , рис 5).


Условный экстремум функции z = f (x , y ) двух переменных можно найти следующим способом(метод исключения ). Из уравнения выразить одну из переменных как функцию другой (например, записать ) и, подставив это значение переменной в функцию , записать последнюю как функцию одной переменной (в рассмотренном случае ). Найти экстремум полученной функции одной переменной.

Достаточное условие экстремума функции двух переменных

1. Пусть функция непрерывно дифференцируема в некоторой окрестности точки и имеет непрерывные частные производные второго порядка (чистые и смешанные).

2. Обозначим за определитель второго порядка

экстремум переменная лекционный функция

Теорема

Если точка с координатами является стационарной точкой для функции, то:

А) При она является точкой локального экстремума причем, при локального максимума, - локального минимума;

В) при точка не является точкой локального экстремума;

С) если, может быть и то, и другое.

Доказательство

Запишем формулу Тейлора для функции, ограничившись двумя членами:

Так как по условию теоремы точка является стационарной, то частные производные второго порядка равны нулю, т.е. и. Тогда

Обозначим

Тогда приращение функции примет вид:

В силу непрерывности частных производных второго порядка (чистых и смешанных) по условию теоремы в точке можно записать:

Где или; ,

1. Пусть и, т.е. или.

2. Приращение функции умножим и разделим на, получим:

3. Дополним выражение в фигурных скобках до полного квадрата суммы:

4. Выражение в фигурных скобках неотрицательно, так как

5. Поэтому если а значит, и, то и, следовательно, согласно определению, точка является точкой локального минимума.

6. Если а значит, и, то, согласно определению точка с координатами - точка локального максимума.

2. Рассмотрим квадратный трехчлен, его дискриминант, .

3. Если, то существуют такие точки, что многочлен

4. Полное приращение функции в точке в соответствии с выражением, полученным в I, запишем в виде:

5. В силу непрерывности частных производных второго порядка по условию теоремы в точке можно записать, что

следовательно, существует - окрестность точки, что, для любой точки квадратный трехчлен больше нуля:

6. Рассмотрим - окрестность точки.

Выберем любое значение, так что точка. Полагая, что в формуле приращения функции

Что, получим:

7. Так как, то.

8. Рассуждая аналогично для корня, получим, что в любой -окрестности точки существует точка для которой, следовательно, в окрестности точки не сохраняет знак, следовательно в точке экстремума нет.

Условный экстремум функции двух переменных

При отыскании экстремумов функции двух переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных.

Пусть заданы функция и линия L на плоскости 0xy. Задача состоит в том, чтобы на линии L найти такую точку P (x, y), в которой значение функции является наибольшим или наименьшим по сравнению со значениями этой функции в точках линии L, находящихся вблизи точки P. Такие точки P называются точками условного экстремума функции на линии L. В отличие от обычной точки экстремума значение функции в точке условного экстремума сравнивается со значениями функции не во всех точках некоторой ее окрестности, а только в тех, которые лежат на линии L.

Совершенно ясно, что точка обычного экстремума (говорят также безусловного экстремума) является и точкой условного экстремума для любой линии, проходящей через эту точку. Обратное же, разумеется, неверно: точка условного экстремума может и не быть точкой обычного экстремума. Проиллюстрируем сказанное на примере.

Пример №1. Графиком функции является верхняя полусфера (рис. 2).

Рис. 2.

Эта функция имеет максимум в начале координат; ему соответствует вершина M полусферы. Если линия L есть прямая, проходящая через точки А и В (ее уравнение), то геометрически ясно, что для точек этой линии наибольшее значение функции достигается в точке, лежащей посередине между точками А и В. Это и есть точка условного экстремума (максимума) функции на данной линии; ей соответствует точка M 1 на полусфере, и из рисунка видно, что ни о каком обычном экстремуме здесь не может быть речи.

Отметим, что в заключительной части задачи об отыскании наибольшего и наименьшего значений функции в замкнутой области приходится находить экстремальные значения функции на границе этой области, т.е. на какой-то линии, и тем самым решать задачу на условный экстремум.

Определение 1. Говорят, что, где имеет в точке, удовлетворяющей уравнению, условный или относительный максимум (минимум): если для любой, удовлетворяющей уравнению, выполняется неравенство

Определение 2. Уравнение вида называется уравнением связи.

Теорема

Если функции и непрерывно дифференцируемы в окрестности точки, и частная производная, и точка является точкой условного экстремума функции относительно уравнения связи, то определитель второго порядка равен нулю:

Доказательство

1. Так как по условию теоремы частная производная, а значение функции, то в некотором прямоугольнике

определена неявная функция

Сложная функция двух переменных в точке будет иметь локальный экстремум, следовательно, или.

2. Действительно, согласно свойству инвариантности формулы дифференциала первого порядка

3. Уравнение связи можно представить в таком виде, значит

4. Умножим уравнение (2) на, а (3) на и сложим их

Следовательно, при

произвольном. ч.т.д.

Следствие

Поиск точек условного экстремума функции двух переменных на практике осуществляется путем решения системы уравнений

Так, в вышеприведенном примере №1 из уравнения связи имеем. Отсюда легко проверить, что достигает максимума при. Но тогда из уравнения связи. Получаем точку P, найденную геометрически.

Пример №2. Найти точки условного экстремума функции относительно уравнения связи.

Найдем частные производные заданной функции и уравнения связи:

Составим определитель второго порядка:

Запишем систему уравнений для отыскания точек условного экстремума:

значит, существует четыре точки условного экстремума функции с координатами: .

Пример №3. Найти точки экстремума функции.

Приравнивая частные производные к нулю: , находим одну стационарную точку - начало координат. Здесь,. Следовательно, и точка (0, 0) не является точкой экстремума. Уравнение есть уравнение гиперболического параболоида (Рис. 3) по рисунку видно, что точка (0, 0) не является точкой экстремума.

Рис. 3.

Наибольшее и наименьшее значение функции в замкнутой области

1. Пусть функция определена и непрерывна в ограниченной замкнутой области D.

2. Пусть в этой области функция имеет конечные частные производные, кроме отдельных точек области.

3. В соответствии с теоремой Вейерштрасса в этой области найдется точка, в которой функция примет наибольшее и наименьшее значение.

4. Если эти точки будут внутренними точками области D, то очевидно, в них будет максимум или минимум.

5. В этом случае интересующие нас точки находятся среди подозрительных точек на экстремум.

6. Однако наибольшее или наименьшее значение функция может принимать и на границе области D.

7. Для того, чтобы найти наибольшее (наименьшее) значение функции в области D, нужно найти все внутренние точки подозрительные на экстремум, вычислить значение функции в них, затем сравнить со значением функции в пограничных точках области, и наибольшее из всех найденных значений будет являться наибольшим в замкнутой области D.

8. Метод отыскания локального максимума или минимума рассматривался ранее в п. 1.2. и 1.3.

9. Остается рассмотреть метод отыскания наибольшего и наименьшего значения функции на границе области.

10. В случае функции двух переменных область обычно оказывается ограниченной кривой или нескольких кривыми.

11. Вдоль такой кривой (или нескольких кривых) переменные и либо зависят одна от другой, либо обе зависят от одного параметра.

12. Таким образом, на границе функция оказывается зависящей от одной переменной.

13. Метод отыскания наибольшего значения функции одной переменной был рассмотрен ранее.

14. Пусть граница области D задана параметрическими уравнениями:

Тогда на этой кривой функция двух переменных будет представлять собой сложную функцию от параметра: . Для такой функции наибольшее и наименьшее значение определяется по методике определения наибольшего и наименьшего значения для функции одной переменной.

Необходимое и достаточные условия экстремума функций двух переменных. Точка называется точкой минимума (максимума) функции если в некоторой окрестности точки функция определена и удовлетворяет неравенству (соответственно Точки максимума и минимума называются точками экстремума функции.

Необходимое условие экстремума. Если в точке экстремума функция имеет первые частные производные, то они обращаются в этой точке в нуль. Отсюда следует, что для отыскания точек экстремума такой функции следует решить систему уравнений Точки, координаты которых удовлетворяют этой системе, называются критическими точками функции. Среди них могут быть точки максимума, точки минимума, а также точки, не являющиеся точками экстремума.

Достаточные условия экстремума используются для выделения точек экстремума из множества критических точек и перечислены ниже.

Пусть функция имеет в критической точке непрерывные вторые частные производные. Если в этой точке выполняется

условие то она является точкой минимума при и точкой максимума при Если в критической точке то она не является точкой экстремума. В случае требуется более тонкое исследование характера критической точки, которая в этом случае может быть точкой экстремума, а может и не быть таковой.

Экстремумы функций трех переменных. В случае функции трех переменных определения точек экстремума дословно повторяют соответствующие определения для функции двух переменных. Ограничимся изложением порядка исследования функции на экстремум. Решая систему уравнений следует найти критические точки функции, а затем в каждой из критических точек вычислить величины

Если все три величины положительны, то рассматриваемая критическая точка является точкой минимума; если то данная критическая точка является точкой максимума.

Условный экстремум функции двух переменных. Точка называется точкой условного минимума (максимума) функции при условии если существует окрестность точки в которой функция определена и в которой (соответственно ) для всех точек координаты которых удовлетворяют уравнению

Для нахождения точек условного экстремума используют функцию Лагранжа

где число называется множителем Лагранжа. Решая систему трех уравнений

находят критические точки функции Лагранжа (а также значение вспомогательного множителя Л). В этих критических точках может быть условный экстремум. Приведенная система дает лишь необходимые условия экстремума, но не достаточные: ей могут удовлетворять координаты точек, не являющихся точками условного экстремума. Однако, исходя из существа задачи, часто удается установить характер критической точки.

Условный экстремум функции многих переменных. Рассмотрим функцию переменных при условии, что связаны уравнениями

Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Условный экстремум. Метод множителей Лагранжа. Нахождение наибольших и наименьших значений.

Лекция 5.

Определение 5.1. Точка М 0 (х 0 , у 0) называется точкой максимума функции z = f (x, y), если f (x o , y o) > f (x, y) для всех точек (х, у) М 0 .

Определение 5.2. Точка М 0 (х 0 , у 0) называется точкой минимума функции z = f (x, y), если f (x o , y o) < f (x, y) для всех точек (х, у) из некоторой окрестности точки М 0 .

Замечание 1. Точки максимума и минимума называются точками экстремума функции нескольких переменных.

Замечание 2. Аналогичным образом определяется точка экстремума для функции от любого количества переменных.

Теорема 5.1 (необходимые условия экстремума). Если М 0 (х 0 , у 0) – точка экстремума функции z = f (x, y), то в этой точке частные производные первого порядка данной функции равны нулю или не существуют.

Доказательство.

Зафиксируем значение переменной у , считая у = у 0 . Тогда функция f (x, y 0) будет функцией одной переменной х , для которой х = х 0 является точкой экстремума. Следовательно, по теореме Ферма или не существует. Аналогично доказывается такое же утверждение для .

Определение 5.3. Точки, принадлежащие области определения функции нескольких переменных, в которых частные производные функции равны нулю или не существуют, называются стационарными точками этой функции.

Замечание. Таким образом, экстремум может достигаться только в стационарных точках, но не обязательно он наблюдается в каждой из них.

Теорема 5.2 (достаточные условия экстремума). Пусть в некоторой окрестности точки М 0 (х 0 , у 0) , являющейся стационарной точкой функции z = f (x, y), эта функция имеет непрерывные частные производные до 3-го порядка включительно. Обозначим Тогда:

1) f (x, y) имеет в точке М 0 максимум, если AC – B ² > 0, A < 0;

2) f (x, y) имеет в точке М 0 минимум, если AC – B ² > 0, A > 0;

3) экстремум в критической точке отсутствует, если AC – B ² < 0;



4) если AC – B ² = 0, необходимо дополнительное исследование.

Доказательство.

Напишем формулу Тейлора второго порядка для функции f (x, y), помня о том, что в стационарной точке частные производные первого порядка равны нулю:

где Если угол между отрезком М 0 М , где М (х 0 + Δх, у 0 + Δу ), и осью Ох обозначить φ, то Δх = Δρ cosφ, Δy = Δρsinφ. При этом формула Тейлора примет вид: . Пусть Тогда можно разделить и умножить выражение в скобках на А . Получим:

Рассмотрим теперь четыре возможных случая:

1) AC-B ² > 0, A < 0. Тогда , и при достаточно малых Δρ. Следовательно, в некоторой окрестности М 0 f (x 0 + Δx, y 0 + Δy) < f (x 0 , y 0) , то есть М 0 – точка максимума.

2) Пусть AC – B ² > 0, A > 0. Тогда , и М 0 – точка минимума.

3) Пусть AC-B ² < 0, A > 0. Рассмотрим приращение аргументов вдоль луча φ = 0. Тогда из (5.1) следует, что , то есть при движении вдоль этого луча функция возрастает. Если же перемещаться вдоль луча такого, что tg φ 0 = -A/B, то , следовательно, при движении вдоль этого луча функция убывает. Значит, точка М 0 не является точкой экстремума.

3`) При AC – B ² < 0, A < 0 доказательство отсутствия экстремума проводится

аналогично предыдущему.

3``) Если AC – B ² < 0, A = 0, то . При этом . Тогда при достаточно малых φ выражение 2B cosφ + C sinφ близко к 2В , то есть сохраняет постоянный знак, а sinφ меняет знак в окрестности точки М 0 . Значит, приращение функции меняет знак в окрестности стационарной точки, которая поэтому не является точкой экстремума.

4) Если AC – B ² = 0, а , , то есть знак приращения определяется знаком 2α 0 . При этом для выяснения вопроса о существовании экстремума необходимо дальнейшее исследование.

Пример. Найдем точки экстремума функции z = x ² - 2xy + 2y ² + 2x. Для поиска стационарных точек решим систему . Итак, стационарная точка (-2,-1). При этом А = 2, В = -2, С = 4. Тогда AC – B ² = 4 > 0, следовательно, в стационарной точке достигается экстремум, а именно минимум (так как A > 0).

Определение 5.4. Если аргументы функции f (x 1 , x 2 ,…, x n) связаны дополнительными условиями в виде m уравнений (m < n) :

φ 1 (х 1 , х 2 ,…, х n) = 0, φ 2 (х 1 , х 2 ,…, х n) = 0, …, φ m (х 1 , х 2 ,…, х n) = 0, (5.2)

где функции φ i имеют непрерывные частные производные, то уравнения (5.2) называются уравнениями связи .

Определение 5.5. Экстремум функции f (x 1 , x 2 ,…, x n) при выполнении условий (5.2) называется условным экстремумом .

Замечание. Можно предложить следующее геометрическое истолкование условного экстремума функции двух переменных: пусть аргументы функции f(x,y) связаны уравнением φ(х,у) = 0, задающим некоторую кривую в плоскости Оху . Восставив из каждой точки этой кривой перпендикуляры к плоскости Оху до пересечения с поверхностью z = f (x,y), получим пространственную кривую, лежащую на поверхности над кривой φ(х,у) = 0. Задача состоит в поиске точек экстремума полученной кривой, которые, разумеется, в общем случае не совпадают с точками безусловного экстремума функции f(x,y).

Определим необходимые условия условного экстремума для функции двух переменных, введя предварительно следующее определение:

Определение 5.6. Функция L (x 1 , x 2 ,…, x n) = f (x 1 , x 2 ,…, x n) + λ 1 φ 1 (x 1 , x 2 ,…, x n) +

+ λ 2 φ 2 (x 1 , x 2 ,…, x n) +…+λ m φ m (x 1 , x 2 ,…, x n) , (5.3)

где λ i – некоторые постоянные, называется функцией Лагранжа , а числа λ i неопределенными множителями Лагранжа .

Теорема 5.3 (необходимые условия условного экстремума). Условный экстремум функции z = f (x, y) при наличии уравнения связи φ (х, у) = 0 может достигаться только в стационарных точках функции Лагранжа L (x, y) = f (x, y) + λφ (x, y).

Доказательство. Уравнение связи задает неявную зависимость у от х , поэтому будем считать, что у есть функция от х : у = у(х). Тогда z есть сложная функция от х , и ее критические точки определяются условием: . (5.4) Из уравнения связи следует, что . (5.5)

Умножим равенство (5.5) на некоторое число λ и сложим с (5.4). Получим:

, или .

Последнее равенство должно выполняться в стационарных точках, откуда следует:

(5.6)

Получена система трех уравнений относительно трех неизвестных: х, у и λ, причем первые два уравнения являются условиями стационарной точки функции Лагранжа. Исключая из системы (5.6) вспомогательное неизвестное λ, находим координаты точек, в которых исходная функция может иметь условный экстремум.

Замечание 1. Проверку наличия условного экстремума в найденной точке можно провести с помощью исследования частных производных второго порядка функции Лагранжа по аналогии с теоремой 5.2.

Замечание 2. Точки, в которых может достигаться условный экстремум функции f (x 1 , x 2 ,…, x n) при выполнении условий (5.2), можно определить как решения системы (5.7)

Пример. Найдем условный экстремум функции z = xy при условии х + у = 1. Составим функцию Лагранжа L(x, y) = xy + λ (x + y – 1). Система (5.6) при этом выглядит так:

Откуда -2λ=1, λ=-0,5, х = у = -λ = 0,5. При этом L (x, y) можно представить в виде L (x, y) = - 0,5 (x – y )² + 0,5 ≤ 0,5, поэтому в найденной стационарной точке L (x, y) имеет максимум, а z = xy – условный максимум.