Главная · Трансмиссия · Угловая скорость равна нулю. Кинематика абсолютно твёрдого тела. Угловая скорость. Связь между линейной и угловой скоростями. Определение линейных скоростей всех точек механизма и угловых скоростей звеньев

Угловая скорость равна нулю. Кинематика абсолютно твёрдого тела. Угловая скорость. Связь между линейной и угловой скоростями. Определение линейных скоростей всех точек механизма и угловых скоростей звеньев

Иногда применительно к автомобилям всплывают вопросы из математики и физики. В частности, одним из таких вопросов является угловая скорость. Она имеет отношение как к работе механизмов, так и к прохождению поворотов. Разберёмся же, как определить эту величину, в чём она измеряется и какими формулами тут нужно пользоваться.

Как определить угловую скорость: что это за величина?

С физико-математической точки зрения эту величину можно определить следующим образом: это данные, которые показывают, как быстро некая точка осуществляет оборот вокруг центра окружности, по которой она движется.

ПОСМОТРЕТЬ ВИДЕО

Эта, казалось бы, чисто теоретическая величина, имеет немалое практическое значение при эксплуатации автомобиля. Вот лишь несколько примеров:

  • Необходимо правильно соотносить движения, с которыми вращаются колёса при повороте. Угловая скорость колеса автомобиля, движущегося по внутренней части траектории, должна быть меньше, чем у внешнего.
  • Требуется рассчитывать, насколько быстро в автомобиле вращается коленвал.
  • Наконец, сама машина, проходя поворот, тоже имеет определённую величину параметров движения – и от них на практике зависит устойчивость автомобиля на трассе и вероятность опрокидывания.

Формула времени, за которое вращается точка по окружности заданного радиуса

Для того, чтобы рассчитывать угловую скорость, используется следующая формула:

ω = ∆φ /∆t

  • ω (читается «омега») – собственно вычисляемая величина.
  • ∆φ (читается «дельта фи») – угол поворота, разница между угловым положением точки в первый и последний момент времени измерения.
  • ∆t
    (читается «дельта тэ») – время, за которое произошло это самое смещение. Точнее, поскольку «дельта», это означает разницу между значениями времени в момент, когда было начато измерение и когда закончено.

Приведённая выше формула угловой скорости применяется лишь в общих случаях. Там же, где речь идёт о равномерно вращающихся объектах или о связи между движением точки на поверхности детали, радиусом и временем поворота, требуется использовать другие соотношения и методы. В частности, тут уже будет необходима формула частоты вращения.

Угловая скорость измеряется в самых разных единицах. В теории часто используется рад/с (радиан в секунду) или градус в секунду. Однако эта величина мало что означает на практике и использоваться может разве что в конструкторской работе. На практике же её больше измеряют в оборотах за секунду (или минуту, если речь идёт о медленных процессах). В этом плане она близка к частоте вращения.

Угол поворота и период обращения

Гораздо более часто, чем угол поворота, используется частота вращения, которая показывает, сколько оборотов делает объект за заданный период времени. Дело в том, что радиан, используемый для расчётов – это угол в окружности, когда длина дуги равна радиусу. Соответственно в целой окружности находится 2 π радианов. Число же π – иррациональное, и его нельзя свести ни к десятичной, ни к простой дроби. Поэтому в том случае, если происходит равномерное вращение, проще считать его в частоте. Она измеряется в об/мин – оборотах в минуту.

Если же дело касается не длительного промежутка времени, а лишь того, за который происходит один оборот, то здесь используется понятие периода обращения. Она показывает, как быстро совершается одно круговое движение. Единицей измерения здесь будет выступать секунда.

Связь угловой скорости и частоты вращения либо периода обращения показывает следующая формулы:

ω = 2 π / T = 2 π *f,

  • ω – угловая скорость в рад/с;
  • T – период обращения;
  • f – частота вращения.

Получить любую из этих трёх величин из другой можно с помощью правила пропорций, не забыв при этом перевести размерности в один формат (в минуты либо секунды)

Чему равна угловая скорость в конкретных случаях?

Приведём пример расчёта на основе приведённых выше формул. Допустим, имеется автомобиль. При движении на 100 км/ч его колесо, как показывает практика, делает в среднем 600 оборотов за минуту (f = 600 об/мин). Рассчитаем угловую скорость.

Поскольку точно выразить π десятичными дробями невозможно, результат примерно равен будет 62,83 рад/с.

Связь угловой и линейной скоростей

На практике часто приходится проверять не только ту скорость, с какой изменяется угловое положение у вращающейся точки, но и скорость её самой применительно к линейному движению. В приведённом выше примере были сделаны расчёты для колеса – но колесо движется по дороге и либо вращается под действием скорости автомобиля, либо само ему эту скорость обеспечивает. Значит, каждая точка на поверхности колеса помимо угловой будет иметь и линейную скорость.

Рассчитать её проще всего через радиус. Поскольку скорость зависит от времени (которым будет период обращения) и пройденного расстояния (которым является длина окружности), то, учитывая приведённые выше формулы, угловая и линейная скорость будут соотноситься так:

  • V – линейная скорость;
  • R – радиус.

Из формулы очевидно, что чем больше радиус, тем выше и значение такой скорости. Применительно к колесу с самой большой скоростью будет двигаться точка на внешней поверхности протектора (R максимален), но вот точно в центре ступицы линейная скорость будет равна нулю.

Ускорение, момент и связь их с массой

Помимо приведённых выше величин, с вращением связано ещё несколько моментов. Учитывая же, сколько в автомобиле крутящихся деталей разного веса, их практическое значение нельзя не учесть.

Равномерное вращение – это важная вещь. Вот только нет ни одной детали, которая бы всё время крутилась равномерно. Число оборотов любого крутящегося узла, от коленвала до колеса, всегда в конечном итоге растёт, а затем падает. И та величина, которая показывает, насколько выросли обороты, называется угловым ускорением. Поскольку она производная от угловой скорости, измеряется она в радианах на секунду в квадрате (как линейное ускорение – в метрах на секунду в квадрате).

С движением и её изменением во времени связан и другой аспект – момент импульса. Если до этого момента мы могли рассматривать только чисто математические особенности движения, то здесь уже нужно учитывать то, что каждая деталь имеет массу, которая распределена вокруг оси. Он определяется соотношением начального положения точки с учётом направления движения – и импульса, то есть произведения массы на скорость. Зная момент импульса, возникающий при вращении, можно определить, какая нагрузка будет приходиться на каждую деталь при её взаимодействии с другой

Шарнир как пример передачи импульса

Характерным примером того, как применяются все перечисленные выше данные, является шарнир равных угловых скоростей (ШРУС) . Эта деталь используется прежде всего на переднеприводных автомобилях, где важно не только обеспечить разный темп вращения колёс при повороте – но и при этом их управляемость и передачу на них импульса от работы двигателя.

ПОСМОТРЕТЬ ВИДЕО

Конструкция этого узла как раз и предназначена для того, чтобы:

  • уравнивать между собой, как быстро вращаются колёса;
  • обеспечивать вращение в момент поворота;
  • гарантировать независимость задней подвеске.

В результате все формулы, приведённые выше, учитываются в работе ШРУС.

Движение точки по окружности можно характеризовать углом поворота радиуса, соединяющего движущуюся точку с центром окружности. Изменение этого угла с течением времени характеризуют угловой скоростью. Угловой скоростью точки называют отношение угла поворота радиус-вектора точки к промежутку времени, за который произошел этот поворот. Угловая скорость численно равна углу поворота радиус-вектора точки за единицу времени.

Угол поворота обычно измеряют в радианах (рад.). Единицей угловой скорости служит радиан в секунду (рад/с) - угловая скорость, при которой точка описывает дугу, опирающуюся на угол, равный одному радиану, за одну секунду.

Полный оборот по окружности составляет рад. Значит, если точка вращается с частотой , то ее угловая скорость есть

Если движение точки по окружности неравномерно, то можно ввести понятие средней угловой скорости и мгновенной угловой скорости, как это делалось для обычной скорости в случае неравномерного движения, В дальнейшем, однако, будем рассматривать только равномерное движение по окружности.

«Обычную» скорость будем, в отличие от угловой скорости, называть линейной скоростью. Легко найти связь между линейной скоростью точки , ее угловой скоростью и радиусом окружности, по которой она движется. Так как, описав угол, равный одному радиану, точка пройдёт по окружности расстояние, равное радиусу, то

т. е. линейная скорость при движении по окружности равна угловой скорости, умноженной на радиус окружности.

Пользуясь (115.1), можно выразить центростремительное ускорение точки при движении по окружности через угловую скорость. Подставляя выражение для скорости (115.1) в (27.1), найдем формулу, выражающую центростремительное ускорение через угловую скорость!

При рассмотрении вращения твердого тела вокруг оси также используется понятие угловой скорости в этом случае угловая скорость у всех точек тела одинакова, так как все они поворачиваются на один и тот же угол. Таким образом, вращение твердого тела вокруг оси можно охарактеризовать угловой скоростью, с которой движутся все его точки. Поэтому будем называть ее угловой скоростью тела. Из формул (115.1) и (115.2) видно, что при вращении твердого тела линейные скорости его точек и их центростремительные ускорения пропорциональны расстоянию от этих точек до оси вращения.

115.1 . Две точки движутся с одинаковыми угловыми скоростями по окружностям, радиусы которых относятся, как 1:2. Найдите отношение ускорений этих точек.

115.2. Что больше: угловая скорость вращения часовой стрелки часов или угловая скорость вращения Земли?

С линейными величинами.

Угловое перемещение - векторная величина, характеризующая изменение угловой координаты в процессе её движения.

Углова́я ско́рость - векторная физическая величина, характеризующая скорость вращения тела. Вектор угловой скорости по величине равен углу поворота тела в единицу времени:

а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.

Единица измерения угловой скорости, принятая в системах СИ и СГС) - радианы в секунду. (Примечание: радиан, как и любые единицы измерения угла, - физически безразмерен, поэтому физическая размерность угловой скорости - просто ). В технике также используются обороты в секунду, намного реже - градусы в секунду, грады в секунду. Пожалуй, чаще всего в технике используют обороты в минуту - это идёт с тех времён, когда частоту вращения тихоходных паровых машин определяли, просто «вручную» подсчитывая число оборотов за единицу времени.

Вектор (мгновенной) скорости любой точки (абсолютно) твердого тела, вращающегося с угловой скоростью определяется формулой:

где - радиус-вектор к данной точке из начала координат, расположенного на оси вращения тела, а квадратными скобками обозначено векторное произведение. Линейную скорость (совпадающую с модулем вектора скорости) точки на определенном расстоянии (радиусе) r от оси вращения можно считать так: v = rω. Если вместо радианов применять другие единицы углов, то в двух последних формулах появится множитель, не равный единице.

В случае плоского вращения, то есть когда все векторы скоростей точек тела лежат (всегда) в одной плоскости («плоскости вращения»), угловая скорость тела всегда перпендикулярна этой плоскости, и по сути - если плоскость вращения заведомо известна - может быть заменена скаляром - проекцией на ось, ортогональную плоскости вращения. В этом случае кинематика вращения сильно упрощается, однако в общем случае угловая скорость может менять со временем направление в трехмерном пространстве, и такая упрощенная картина не работает.

Производная угловой скорости по времени есть угловое ускорение.

Движение с постоянным вектором угловой скорости называется равномерным вращательным движением (в этом случае угловое ускорение равно нулю).

Угловая скорость (рассматриваемая как свободный вектор) одинакова во всех инерциальных системах отсчета, однако в разных инерциальных системах отсчета может различаться ось или центр вращения одного и того же конкретного тела в один и тот же момент времени (то есть будет различной «точка приложения» угловой скорости).

В случае движения одной единственной точки в трехмерном пространстве можно написать выражение для угловой скорости этой точки относительно выбранного начала координат:

Где - радиус-вектор точки (из начала координат), - скорость этой точки. - векторное произведение, - скалярное произведение векторов. Однако эта формула не определяет угловую скорость однозначно (в случае единственной точки можно подобрать и другие векторы , подходящие по определению, по другому - произвольно - выбрав направление оси вращения), а для общего случая (когда тело включает более одной материальной точки) - эта формула не верна для угловой скорости всего тела (так как дает разные для каждой точки, а при вращении абсолютно твёрдого тела по определению угловая скорость его вращения - единственный вектор). При всём при этом, в двумерном случае (случае плоского вращения) эта формула вполне достаточна, однозначна и корректна, так как в этом частном случае направление оси вращения заведомо однозначно определено.

В случае равномерного вращательного движения (то есть движения с постоянным вектором угловой скорости) декартовы координаты точек вращающегося так тела совершают гармонические колебания с угловой (циклической) частотой, равной модулю вектора угловой скорости.

При измерении угловой скорости в оборотах в секунду (об/с), модуль угловой скорости равномерного вращательного движения совпадает с частотой вращения f, измеренной в герцах (Гц)

(то есть в таких единицах ).

В случае использования обычной физической единицы угловой скорости - радианов в секунду - модуль угловой скорости связан с частотой вращения так:

Наконец, при использовании градусов в секунду связь с частотой вращения будет:

Углово́е ускоре́ние - псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости твёрдого тела.

При вращении тела вокруг неподвижной оси, угловое ускорение по модулю равно:

Вектор углового ускорения α направлен вдоль оси вращения (в сторону при ускоренном вращении и противоположно - при замедленном).

При вращении вокруг неподвижной точки вектор углового ускорения определяется как первая производная от вектора угловой скорости ω по времени, то есть

и направлен по касательной к годографу вектора в соответствующей его точке.

Существует связь между тангенциальным и угловым ускорениями:

где R - радиус кривизны траектории точки в данный момент времени. Итак, угловое ускорении равно второй производной от угла поворота по времени или первой производной от угловой скорости по времени. Угловое ускорение измеряется в рад/сек2 .

Угловая скорость и угловое ускорение

Рассмотрим твердое тело, которое вращается вокруг неподвижной оси. Тогда отдель­ные точки этого тела будут описывать окружности разных радиусов, центры которых лежат на оси вращения. Пусть некоторая точка движется по окружности радиуса R (рис. 6). Ее положение через промежуток времени Dt зададим углом D . Элементар­ные (бесконечно малые) повороты можно рассматривать как векторы (они обозначают­ся или ). Модуль вектора равен углу поворота, а его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в направлении движения точки по окружности, т.е. подчиняетсяправилу правого винта (рис.6). Векторы, направления которых связываются с направлением вращения, назы­ваютсяпсевдовекторами илиаксиальными векторами. Эти векторы не имеют опреде­ленных точек приложения: они могут откладываться из любой точки оси вращения.

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Вектор направлен вдоль оси вращения по правилу правого винта, т.е. так же, как и вектор (рис.7). Размерность угловой скорости dim w=T – 1 , а ее единица - ради­ан в секунду (рад/с).

Линейная скорость точки (см. рис. 6)

В векторном виде формулу для линейной скорости можно написать как векторное произведение:

При этом модуль векторного произведения, по определению, равен , а направление совпадает с направлением поступательного движения правого винта при его вращении от к R .

Если ( = const, то вращение равномерное и его можно характеризовать периодом вращения T - временем, за которое точка совершает один полный оборот, т.е. поворачивается на угол 2p. Так как промежутку времени Dt = T соответствует = 2p, то = 2p/T , откуда

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называется частотой вращения:

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору (рис.8), при замедлен­ном - противонаправлен ему (рис.9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

Таким образом, связь между линейными (длина пути s , пройденного точкой по дуге окружности радиуса R , линейная скорость v, тангенциальное ускорение , нормальное ускорение ) и угловыми величинами (угол поворота j, угловая скорость w, угловое ускорение e) выражается следующими формулами:

В случае равнопеременного движения точки по окружности (e=const)

где w 0 - начальная угловая скорость.

Законы Ньютона.

Первый закон Ньютона. Масса. Сила

Динамика является основным разделом механики, в ее основе лежат три закона Ньютона, сформулированные им в 1687 г. Законы Ньютона играют исключительную роль в механике и являются (как и все физические законы) обобщением результатов огромного человеческого опыта. Их рассматривают как систему взаимосвязанных законов и опытной проверке подвергают не каждый отдельный закон, а всю систему в целом.

Первый закон Ньютона : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние . Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью . Поэтому первый закон Ньютона называют также законом инерции .

Механическое движение относительно, и его характер зависит от системы отсчета. Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами отсчета . Инерциальной системой отсчета является такая система отсчета, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется равномерно и прямолинейно. Первый закон Ньютона утверждает существование инерциальных систем отсчета.

Опытным путем установлено, что инерциальной можно считать гелиоцентрическую (звездную) систему отсчета (начало координат находится в центре Солнца, а оси проведаны в направлении определенных звезд). Система отсчета, связанная с Землей, строго говоря, неинерциальна, однако эффекты, обусловленные ее неинерциальностью (Земля вращается вокруг собственной оси и вокруг Солнца), при решении многих задач пренебрежимо малы, и в этих случаях ее можно считать инерциальной.

Из опыта известно, что при одинаковых воздействиях различные тела неодинаково изменяют скорость своего движения, т.е., иными словами, приобретают различные ускорения. Ускорение зависит не только от величины воздействия, но и от свойств самого тела (от его массы).

Масса тела - физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса ) и гравитационные (гравитационная масса ) свойства. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10 –12 их значения).

Чтобы описывать воздействия, упоминаемые в первом законе Ньютона, вводят понятие силы. Под действием сил тела либо изменяют скорость движения, т. е. приобретают ускорения (динамическое проявление сил), либо деформируются, т. е. изменяют свою форму и размеры (статическое проявление сил). В каждый момент времени сила характеризуется числовым значением, направлением в пространстве и точкой приложения. Итак, сила - это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Второй закон Ньютона

Второй закон Ньютона - основной закон динамики поступательного движения - от­вечает на вопрос, как изменяется механическое движение материальной точки (тела) под действием приложенных к ней сил.

Если рассмотреть действие различных сил на одно и то же тело, то оказывается, что ускорение, приобретаемое телом, всегда прямо пропорционально равнодействующей приложенных сил:

а ~ F (т = const) . (6.1)

При действии одной и той же силы на тела с разными массами их ускорения оказываются различными, а именно

а ~ 1/т (F = const) . (6.2)

Используя выражения (6.1) и (6.2) и учитывая, что сила и ускорение-величины векторные, можем записать

а = kF/m. (6.3)

Соотношение (6.3) выражает второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки (тела).

В СИ коэффициент пропорциональности k= 1. Тогда

(6.4)

Учитывая, что масса материальной точки (тела) в классической механике есть величина постоянная, в выражении (6.4) ее можно внести под знак производной:

Векторная величина

численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называется импульсом (количеством движения) этой материаль­ной точки.

Подставляя (6.6) в (6.5), получим

Это выражение - более общая формулировка второго закона Ньютона : скорость изме­нения импульса материальной точки равна действующей на нее силе. Выражение (6.7) называется уравнением движения материальной точки .

Единица силы в СИ - ньютон (Н): 1 Н - сила, которая массе 1 кг сообщает ускорение 1 м/с 2 в направлении действия силы:

1 Н = 1 кг×м/с 2 .

Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго. Действительно, в случае равенст­ва нулю равнодействующей сил (при отсутствии воздействия на тело со стороны других тел) ускорение (см. (6.3)) также равно нулю. Однако первый закон Ньютона рассматривается как самостоятельный закон (а не как следствие второго закона), так как именно он утверждает существование инерциальных систем отсчета, в которых только и выполняется уравнение (6.7).

В механике большое значение имеет принцип независимости действия сил : если на материальную точку действует одновременно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было. Согласно этому принципу, силы и ускорения можно разлагать на составляющие, использование которых приводит к существенному упрощению решения задач. Например, на рис. 10 действующая сила F=m a разложена на два компонен­та: тангенциальную силу F t , (направлена по касательной к траектории) и нормальную силу F n (направлена по нормали к центру кривизны). Используя выражения и , а также , можно записать:

Если на материальную точку действует одновременно несколько сил, то, согласно принципу независимости действия сил, под F во втором законе Ньютона понимают результирующую силу.

Третий закон Ньютона

Взаимодействие между материальными точками (телами) определяется третьим зако­ном Ньютона : всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки:

F 12 = – F 21 , (7.1)

где F 12 - сила, действующая на первую материальную точку со стороны второй;

F 21 - сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и явля­ются силами одной природы.

Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что и для системы материальных точек взаимодействие сводится к силам парного взаимодействия между материальными точками.


Похожая информация.


Скоростью электропривода называют скорость электродвигательного устройства (электродвигателя) и всех движущихся масс, механически связанных с ним.

В судовых электроприводах используют, в основном, два вида движения:

1. поступательное, например, перемещение груза при помощи лебедки, движение ленты транспортера и т.п.;

2. вращательное, например, вращение вала электродвигателя насоса.

Кроме поступательного и вращательного, в некоторых судовых электроприводах используется возвратно-поступательное движение, например, в поршневых насосах.

Вал электродвигателя вращается и через кривошипно-шатунный механизм застав-

ляет поршень внутри цилиндра двигаться поступательно, вверх-вниз.

Поэтому единицы измерения скорости при поступательном и вращательном движе-

нии разные.

Рассмотрим эти единицы.

Единицы измерения скорости при поступательном движении

При поступательном движении скорость поступательно движущихся масс называется «линейная скорость», обозначается латинской буквой «υ» и измеряется в «м/с» (метр в секунду) или «м/мин» (метр в минуту).Например, скорость подъёма груза электропривода лебёдки υ = 30 м/мин.

На практике применяют внесистемные (не соответствующие системе СИ) едини-

цы измерения скорости, например, километр в час (км/ч), узел (один кабельтов в час,

причем 1 кабельтов равен одной морской миле, т. е. 1852 м), и т.д.

Единицы измерения скорости при вращательном движении

При измерении скорости вращающихся масс применяют два наименования скорости:

1. «частота вращения», обозначается латинской буквой «n» и измеряется в

«об/мин» (оборот в минуту). Например, частота вращения двигателя n = 1500 об/мин.

Эта единица скорости – внесистемная, т.к. в ней используется внесистемная единица времени, а именно – минута (в системе СИ время измеряется в секундах).

Тем не менее эта единица до сих пор широко применяется на практике. Например, в паспортных данных электродвигателей скорость вала указывается именно в об/ мин.

2. «угловая скорость», обозначается латинской буквой «ω» и измеряется в

«рад/с» (радиан в секунду) или, что одно и то же, с (секунда в минус первой степени). Например, угловая скорость электродвигателя ω = 157 с .

Напомним, что радиан – вторая, кроме знакомого нам пространственного градуса

(º), единица измерения углового расстояния, равная 360º / 2π = 360 / 2*3,14 = 57º36" (пять

десят семь градусов и 36 минут).

Впервые возникла в расчетах, где часто встречалось число 360º / 2π.

Эта единица скорости – системная, т.к. в ней используется системная единица вре-

мени, а именно – секунда.

В теории электропривода применяется только вторая единица - (радиан в секунду)

На практике надо уметь быстро переходить от одной единицы скорости к другой и наоборот.

Поэтому выведем соотношение между этими двумя единицами.

Угловая частота (через частоту вращения):

ω = 2 πn / 60 = n / (60 / 2 π) = n / 9,55 ≈ n / 10 (1).

Пример №1.

В паспорте электродвигателя указана номинальная скорость вала n = 1500 об/мин.

Найти угловую скорость вращения вала этого электродвигателя.

Частота вращения вала

ω =n / 9,55 = 1500 / 9,55 = 157 ≈ 150 с .

Теперь найдем обратное соотношение.

Частота вращения (через угловую частоту):

n = 60 ω / 2 π = 60 ω / 2*3,14 = 9,55 ω ≈ 10 ω (2)

Пример №2.

Угловая частота вала электродвигателя ω = 314 с .

Найти частоту вращения вала этого электродвигателя.

Частота вращения вала

n = 9,55 ω = 9,55*314 = 3000 ≈ 3140 об/ мин.

Вращательное движение вокруг неподвижной оси - еще один частный случай движения твердого тела.
Вращательным движением твердого тела вокруг неподвижной оси называется такое его движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой, называемой осью вращения, при этом плоскости, которым принадлежат эти окружности, перпендикулярны оси вращения (рис.2.4 ).

В технике такой вид движения встречается очень часто: например, вращение валов двигателей и генераторов, турбин и пропеллеров самолетов.
Угловая скорость . Каждая точка вращающегося вокруг оси тела, проходящей через точку О , движется по окружности, и различные точки проходят за время разные пути. Так, , поэтому модуль скорости точки А больше, чем у точки В (рис.2.5 ). Но радиусы окружностей поворачиваются за время на один и тот же угол . Угол - угол между осью ОХ и радиус-вектором , определяющим положение точки А (см. рис.2.5).

Пусть тело вращается равномерно, т. е. за любые равные промежутки времени поворачивается на одинаковые углы. Быстрота вращения тела зависит от угла поворота радиус-вектора, определяющего положение одной из точек твердого тела за данный промежуток времени; она характеризуется угловой скоростью . Например, если одно тело за каждую секунду поворачивается на угол , а другое - на угол , то мы говорим, что первое тело вращается быстрее второго в 2 раза.
Угловой скоростью тела при равномерном вращении называется величина, равная отношению угла поворота тела к промежутку времени , за который этот поворот произошел.
Будем обозначать угловую скорость греческой буквой ω (омега). Тогда по определению

Угловая скорость выражается в радианах в секунду (рад/с).
Например, угловая скорость вращения Земли вокруг оси равна 0,0000727 рад/с, а точильного диска - около 140 рад/с 1 .
Угловую скорость можно выразить через частоту вращения , т. е. число полных оборотов за 1с. Если тело совершает (греческая буква «ню») оборотов за 1с, то время одного оборота равно секунд. Это время называют периодом вращения и обозначают буквой T . Таким образом, связь между частотой и периодом вращения можно представить в виде:

Полному обороту тела соответствует угол . Поэтому согласно формуле (2.1)

Если при равномерном вращении угловая скорость известна и в начальный момент времени угол поворота , то угол поворота тела за время t согласно уравнению (2.1) равен:

Если , то , или .
Угловая скорость принимает положительные значения, если угол между радиус-вектором, определяющим положение одной из точек твердого тела, и осью ОХ увеличивается, и отрицательные, когда он уменьшается.
Тем самым мы можем описать положение точек вращающегося тела в любой момент времени.
Связь между линейной и угловой скоростями . Скорость точки, движущейся по окружности, часто называют линейной скоростью , чтобы подчеркнуть ее отличие от угловой скорости.
Мы уже отмечали, что при вращении твердого тела разные его точки имеют неодинаковые линейные скорости, но угловая скорость для всех точек одинакова.
Между линейной скоростью любой точки вращающегося тела и его угловой скоростью существует связь. Установим ее. Точка, лежащая на окружности радиусом R , за один оборот пройдет путь . Поскольку время одного оборота тела есть период T , то модуль линейной скорости точки можно найти так: