Статьи по теме "Выпуск"

Кислородный датчик

Кислородный датчик (другое наименование лямбда-зонддатчик концентрации кислорода) служит для определения количества кислорода в отработавших газах.

Для обеспечения эффективной (экономичной и экологичной) работы двигателя внутреннего сгорания соотношение воздуха и топлива в топливно-воздушной смеси должно быть постоянным на всех режимах работы. Это достигается использованием кислородного датчика в выпускной системе. Сам процесс управления содержанием кислорода в выхлопных газах называется лямбда-регулирование.

Так, при недостатке воздуха в топливно-воздушной смеси, углеводороды и угарный газ полностью не окисляются. С другой стороны, при избытке воздуха оксиды азота полностью не разлагаются на азот и кислород.

Лямбда-зонд устанавливается в выпускной системе. На отдельных моделях автомобилей применяется два кислородных датчика: один устанавливается до каталитического нейтрализатора, другой – после. Применение двух кислородных датчиков усиливает контроль за составом отработавших газов и обеспечивает эффективную работу нейтрализатора.

В зависимости от конструкции различают два вида кислородных датчиков:

  • двухточечный датчик;
  • широкополосный датчик.

Двухточечный датчик устанавливается как перед нейтрализатором, так и за ним. Датчик фиксирует коэффициент избытка воздуха в топливно-воздушной смеси (λ) по величине концентрации кислорода в отработавших газах.

Двухточечный датчик представляет собой керамический элемент, имеющий двухсторннее покрытие из диоксида циркония. Измерение осуществляется электрохимическим способом. Электрод одной стороной контактирует с выхлопными газами, друго - с атмосферой.

Принцип действия двухточечного кислородного датчикаоснован на измерении содержания кислорода в отработавших газах и атмосфере. При разной концентрации кислорода в отработавших газах и атмосфере на концах электрода создается напряжение. Чем выше содержание кислорода (обедненная топливно-воздушная смесь), тем ниже напряжение, чем ниже содержание кислорода (обогащенная топливно-воздушная смесь), тем выше напряжение.

Электрический сигнал от кислородного датчика поступает в электронный блок управления системы управления двигателем. В зависимости от величины сигнала блок управления воздействуют на исполнительные органы подконтрольных ему систем автомобиля.

Широкополосный датчик представляет собой современную конструкцию лямбда-зонда. Он применяется в качестве входного датчика каталитического нейтрализатора. В широкополосном датчике значение "лямбда" определяется с использованием силы тока закачивания.

В отличие от двухточечного датчика широкополосный датчик состоит из двух керамических элементов - двухточечного и закачивающего. Под закачиванием понимается физический процесс, при котором кислород из отработавших газов проходит через закачивающий элемент под воздействием определенной силы тока.

Принцип работы широкополосного датчика основан на поддержании постоянного напряжения (450 мВ) между электродами двухточечного элемента за счет изменения силы тока закачивания.

Снижение концентрации кислорода в отработавших газах (обогащенная топливно-воздушная смесь) сопровождается ростом напряжения между электродами двухточечного керамического элемента. Сигнал от элемента подается в электронный блок управления, на основании которого создается ток, определенной силы, на закачивающем элементе.

Ток, в свою очередь, обеспечивает закачку в измерительный зазор и напряжение достигает нормативного значения. Величина силы тока при этом является мерой концентрации кислорода в отработавших газах. Она анализируется электронным блоком управления и преобразуется в управляющие воздействия на исполнительные устройства системы впрыска.

При обеднении топливно-воздушной смеси работа широкополосного датчика осуществляется аналогичным образом. Отличие состоит в том, что под действием тока происходит выкачивание кислорода из измерительного зазора наружу.

Эффективная работа кислородного датчика осуществляется при температуре 300°С. Для скорейшего достижения рабочей температуры лямбда-зонд оборудуется нагревателем.

Глушитель

Глушитель является важным конструктивным элементом выпускной системы, без которого эксплуатация современного автомобиля просто невозможна. Автомобильный глушитель выполняет следующие основные функции:

  • снижение уровня шума отработавших газов;
  • преобразование энергии отработавших газов, снижение их скорости, температуры, пульсации.

Отработавшие газы, покидающие цилиндры двигателя, имеют высокое давление. При движении отработавших газов по выпускной системе создаются звуковые волны, распространяющиеся быстрее газов. Глушитель преобразует энергию звуковых колебаний в тепловую энергию, чем достигается снижение уровня шума до определенного (заданного) значения. Вместе с тем с применением глушителя в выпускной системе создается противодавление, которое приводит к некоторому снижению мощности двигателя.

В глушителе используется несколько технологий снижения уровня шума:

  • расширение (сужение) потока;
  • изменение направления потока;
  • интерференция звуковых волн;
  • поглощение звуковых волн.

Расширение потока реализовано посредством нескольких камер разного объема, разделенных перегородками. Позволяет эффективно гасить низкочастотные звуковые колебания. Наряду с расширением в глушителе осуществляется сужение потока с помощью диафрагменного отверстия (дросселя). Используется для гашения высокочастотного шума.

В глушителе, за исключением прямоточных глушителей, предусматривается изменение направления движения потокаотработавших газов. Угол поворота потока находится в пределе 90-360°, чем достигается гашение средне- и высокочастотных звуковых колебаний.

Интерференция звуковых волн, в зависимости от характера их наложения, приводит к увеличению (конструктивная интерференция) или уменьшению (деструктивная интерференция) амплитуды колебаний. В глушителе используются оба вида интерференции. Технология реализована с помощью перфорационных отверстий в трубах глушителя. Изменяя размер отверстий и объем окружающей трубу камеры можно добиться гашения звуковых колебаний в широком диапазоне частот.

При прохождении звуковых волн через специальный звукопоглощающий материал происходит их поглощение. Данный способ эффективен при гашении высокочастотных звуковых колебаний.

Для достижения наибольшего эффекта данные технологии в глушителях используются, как правило, в комплексе.

В современных автомобилях устанавливается от одного до пяти глушителей, в основном – два. Ближайший к двигателю глушитель называется предварительным (передним) глушителем или резонатором. За ним следует основной (задний) глушитель. Для каждой конкретной модели автомобиля и марки двигателя используется свой набор глушителей.

Схема резонатора

Резонатор служит для предварительного снижения уровня шума и уравновешивания пульсаций потока отработавших газов. Конструктивно резонатор представляет собой перфорированную трубу, помещенную в металлический корпус. Для повышения эффективности гашения колебаний в трубе выполняется дроссельное отверстие.

Схема основного глушителя

Основной глушитель обеспечивает окончательное шумоподавление. Он имеет более сложную конструкцию. В металлическом корпусе размещается несколько перфорированных трубок. Корпус разделен перегородками на 2-4 камеры. Некоторые камеры могут заполняться звукопоглощающим материалом. В основном глушителе поток отработавших газов многократно меняет свое направление –лабиринтный глушитель.

Из всех конструктивных элементов выпускной системы больше всех подвергается модернизации (тюнингу) глушитель. При тюнинге выпускной системы устанавливается т.н. прямоточный глушитель(одна прямоточная труба на все камеры без изменения направления потока). Такой глушитель обладает меньшим противодавлением, но существенной прибавки в мощности двигателя он не дает. Основное преимущество прямоточного глушителя «благородное» или «спортивное» звучание автомобиля (кому, что больше нравиться).

Схема прямоточного глушителя

Конструкция прямоточного глушителя объединяет корпус из нержавеющей стали, в котором размещена перфорированная труба, обернутая стальной сеткой и звукопоглощающим материалом. Стальная сетка обеспечивает в основном защиту звукопоглощающего материала от выдува. В качестве звукопоглощающего материала используется стекловолокно. В прямоточном глушителе звуковые волны беспрепятственно проходят через отверстия трубы, металлическую сетку и поглощаются стекловолокном (преобразуются в тепловую энергию).

Сажевый фильтр

На легковых автомобилях с дизельным двигателем в составе выпускной системы с 2004 года применяется сажевый фильтр. С введением норм Евро-5 в 2009 году применение сажевого фильтра является обязательным.

Дизельный сажевый фильтр (Diesel Particulare Filter, DPF) предназначен для снижения выброса сажевых частиц в атмосферу с отработавшими газами. Применения фильтра позволяет добиться снижения частиц сажи в отработавших газах до 80-100%.

Конструктивно сажевый фильтр может быть выполнен в виде отдельного конструктивного элемента выпускной системы. В другой конструкции сажевый фильтр объединен с каталитическим нейтрализатором окислительного типа и имеет название сажевый фильтр с каталитическим покрытием.

В работе сажевого фильтра различается два последовательных этапа: фильтрация и регенерация сажи. При фильтрациипроисходит захват частиц сажи и оседание их на стенках фильтра. Не задерживаются только частицы сажи малого размера (от 0,1 до 1 мкм). Их доля невелика (до 5%), но это самые опасные для человека выбросы.

Скопившиеся частицы сажи создают препятствие для отработавших газов, что приводит к снижению мощности двигателя. Поэтому периодически требуется очистка фильтра от накопившейся сажи или регенерация. В разных конструкциях сажевого фильтра реализованы разные способы регенерации сажи.

Сажевый фильтр с каталитическим покрытием

Сажевый фильтр с каталитическим покрытием применяется на автомобилях концерна Volkswagen и ряда других производителей. Он устанавливается за выпускным коллектором в непосредственной близости от двигателя, там, где температура отработавших газов максимальна.

Основным конструктивным элементом сажевого фильтра являетсяматрица, которая изготавливается из керамики (карбида кремния). Керамическая матрица имеет ячеистую структуру, состоящую из каналов малого сечения, попеременно закрытых с одной и с другой стороны. Стенки каналов имеют пористую структуру и выполняют роль фильтра. На поверхность стенок нанесен тонкий слой катализатора – титана. Матрица помещена в металлический корпус.

При прохождении отработавших газов через сажевый фильтр, частицы сажи задерживаются на поверхности стенок матрицы. Нанесенный на стенки матрицы катализатор способствует окислению несгоревших углеводородов и угарного газа.

В работе сажевого фильтра с каталитическим покрытием различают активную и пассивную регенерацию.

При пассивной регенерации происходит непрерывное окисление сажи за счет действия катализатора и высокой температуры отработавших газов (350-500°С). Цепочка химических преобразований при пассивной регенерации имеет следующий вид:

  • оксиды азота вступают в реакцию с кислородом в присутствии катализатора с образованием диоксида азота;
  • диоксид азота вступает в реакцию с частицами сажи (углеродом) с образованием оксида азота и угарного газа;
  • оксид азота и угарный газ вступают в реакцию с кислородом с образованием диоксида азота и углекислого газа.

При определенных режимах работы двигателя (небольшая нагрузка и др.) наблюдается недостаточно высокая температура отработавших газов и пассивная регенерация происходить не может. В этом случае осуществляется активная (принудительная) регенерация сажевого фильтра. Активная регенерация происходит при температуре 600-650°С, которая создается при помощи системы управления дизелем. При данной температуре частицы сажи сгорают, т.е. вступают в реакцию с кислородом с образованием углекислого газа.

Управление активной регенерацией сажевого фильтра осуществляется с помощью следующих датчиков системы управления дизелем:

  • расходомер воздуха;
  • датчик температуры отработавших газов до сажевого фильтра;
  • датчик температуры отработавших газов после сажевого фильтра;
  • датчик перепада давления в сажевом фильтре.

На основании электрических сигналов датчиков электронный блок управления производит дополнительный впрыск топлива в камеру сгорания, а также снижает подачу воздуха в двигатель и прекращает рециркуляцию отработавших газов. При этом температура отработавших газов поднимается до требуемой величины.

Сажевый фильтр с автоматической регенерацией

Сажевый фильтр с автоматической регенерацией (Filtre a Particules, FAP) является разработкой концерна PSA (Peuqeot-Citroen). В выпускной системе фильтр устанавливается отдельно за каталитическим нейтрализатором. В данной конструкции фильтра применен способ регенерации сажи за счет впрыска в топливо присадки, повышающей температуру отработавших газов. Аналогичный подход реализован в сажевых фильтрах других автопроизводителей (Ford, Toyota).

Работа сажевого фильтра организована следующим образом. При заполнении фильтра частицами сажи, система управления дизелем обеспечивает автоматический впрыск в дизельное топливо специальной присадки, содержащей церий. Церий обладает свойством при сгорании выделять большое количество тепла.

Присадка впрыскивается по сигналу блока управления несколько раз. Первый раз - на такте впрыска топлива. При этом повышается температура отработавших газов, которые разогревают матрицу фильтра до температуры 700°С.

При достижении заданной температуры, впрыск присадки происходит на такте выпуска отработавших газов. Церий при этом не сгорает, а доставляется с газами в сажевый фильтр. При попадании на раскаленную поверхность матрицы топливо вместе с церием воспламеняется. Температуры достигает 1000°С, при которой сажа полностью окисляется (сгорает), т.е. происходит регенерация фильтра. Необходимо отметить, что несмотря на высокую температуру, разрушение матрицы фильтра не происходит.

Церийсодержащая присадка хранится в отдельной емкости, заправки которой хватает на несколько лет работы двигателя (порядка 80000 км пробега). Сажевый фильтр с автоматической регенерацией устойчив к использованию дизельного топлива низкого качества, при этом расход присадки увеличивается.