Статьи по теме "Впуск"

Система изменения фаз газораспределения

Система изменения фаз газораспределения (общепринятое международное название Variable Valve TimingVVT) предназначена для регулирования параметров работы газораспределительного механизма в зависимости от режимов работы двигателя. Применение данной системы обеспечивает повышение мощности и крутящего момента двигателя, топливную экономичность и снижение вредных выбросов.

К регулируемым параметрам работы газораспределительного механизма относятся:

  • момент открытия (закрытия) клапанов;
  • продолжительность открытия клапанов;
  • высота подъема клапанов.

В совокупности эти параметры составляют фазы газораспределения – продолжительность тактов впуска и выпуска, выраженную углом поворота коленчатого вала относительно «мертвых» точек. Фаза газораспределения определяется формой кулачка распределительного вала, воздействующего на клапан.

На разных режимах работы двигателя требуется разная величина фаз газораспределения. Так, при низких оборотах двигателя фазы газораспределения должны иметь минимальную продолжительность («узкие» фазы). На высоких оборотах, наоборот, фазы газораспределения должны быть максимально широкими и при этом обеспечивать перекрытие тактов впуска и выпуска (естественную рециркуляцию отработавших газов).

Кулачок распределительного вала имеет определенную форму и не может одновременно обеспечить узкие и широкие фазы газораспределения. На практике форма кулачка представляет собой компромисс между высоким крутящим моментом на низких оборотах и высокой мощностью на высоких оборотах коленчатого вала. Это противоречие, как раз и разрешает система изменения фаз газораспределения.

В зависимости от регулируемых параметров работы газораспределительного механизма различают следующие способы изменяемых фаз газораспределения:

  • поворот распределительного вала;
  • применение кулачков с разным профилем;
  • изменение высоты подъема клапанов.

Наиболее распространенными являются системы изменения фаз газораспределения, использующие поворот распределительного вала:

  • VANOS (Double VANOS) от BMW;
  • VVT-i (Dual VVT-i), Variable Valve Timing with intelligence от Toyota;
  • VVT, Variable Valve Timing от Volkswagen;
  • VTC, Variable Timing Control от Honda;
  • CVVT, Continuous Variable Valve Timing от Hyundai, Kia, Volvo, General Motors;
  • VCP, Variable Cam Phases от Renault.

Принцип работы данных систем основан на повороте распределительного вала по ходу вращения, чем достигается раннее открытие клапанов по сравнению с исходным положением.

Система изменения фаз газораспределения данного типа имеет следующее общее устройство:

Схема системы автоматического изменения фаз газораспределения

Гидроуправляемая муфта(обиходное название фазовращатель) непосредственно осуществляет поворот распределительного вала. Муфта состоит из ротора, соединенного с распределительным валом, и корпуса, в роли которого выступает шкив привода распределительного вала. Между ротором и корпусом имеются полости, к которым по каналам подводится моторное масло. Заполнение той или иной полости маслом обеспечивает поворот ротора относительно корпуса и соответственно поворот распределительного вала на определенный угол.

В большинстве своем гидроуправляемая муфта устанавливается на распределительный вал впускных клапанов. Для расширения параметров регулирования в отдельных конструкциях муфты устанавливаются на впускной и выпускной распределительные валы.

Система управления обеспечивает автоматическое регулирование работы гидроуправляемой муфты. Конструктивно она включает входные датчики, электронный блок управления и исполнительные устройства. В работе системы управления используются датчики Холла, оценивающие положения распределительных валов, а также другие датчики системы управления двигателем: частоты вращения коленчатого вала, температуры охлаждающей жидкости, расходомер воздуха. Блок управления двигателем принимает сигналы от датчиков и формирует управляющие воздействия на исполнительное устройство – электрогидравлический распределитель. Распределитель представляет собой электромагнитный клапан и обеспечивает подвод масла к гидроуправляемой муфте и отвод от нее в зависимости от режимов работы двигателя.

Система изменения фаз газораспределения предусматривает работу, как правило, в следующих режимах:

  • холостой ход (минимальные обороты коленчатого вала);
  • максимальная мощность;
  • максимальный крутящий момент.

Другая разновидность системы изменения фаз газораспределения построена на применении кулачков различной формы, чем достигается ступенчатое изменение продолжительности открытия и высоты подъема клапанов. Известными такими системами являются:

  • VTEC, Variable Valve Timing and Lift Electronic Control от Honda;
  • VVTL-i, Variable Valve Timing and Lift with intelligence от Toyota;
  • MIVEC, Mitsubishi Innovative Valve timing Electronic Control отMitsubishi;
  • Valvelift System от Audi.

Данные системы имеют, в основном, схожую конструкцию и принцип действия, за исключением Valvelift System. К примеру, одна из самых известных система VTEC включает:

  • набор кулачков различного профиля;
  • систему управления.

Схема системы VTEC

Распределительный вал имеет два малых и один большой кулачок. Малые кулачки через соответствующие коромысла (рокеры) соединены с парой впускных клапанов. Большой кулачок перемещает свободное коромысло.

Система управления обеспечивает переключение с одного режима работы на другой путем срабатывания блокирующего механизма. Блокирующий механизм имеет гидравлический привод. При низких оборотах двигателя (малой нагрузке) работа впускных клапанов производится от малых кулачков, при этом фазы газораспределения характеризуются малой продолжительностью. При достижении оборотов двигателя определенного значение система управления приводит в действие блокирующий механизм. Коромысла малых и большого кулачков соединяются с помощью стопорного штифта в одно целое, при этом усилие на впускные клапаны передается от большого кулачка.

Другая модификация системы VTEC имеет три режима регулирования, определяемые работой одного малого кулачка (открытие одного впускного клапана, малые обороты двигателя), двух малых кулачков (открытие двух впускных клапанов, средние обороты), а также большого кулачка (высокие обороты).

Современной системой изменения фаз газораспределения от Honda является система I-VTEC, объединяющая системы VTEC и VTC. Данная комбинация существенным образом расширяет параметры регулирования двигателя.

Наиболее совершенная с конструктивной точки зрения разновидность системы изменения фаз газораспределения основана на регулировании высоты подъема клапанов. Данная система позволяет отказаться от дроссельной заслонки на большинстве режимов работы двигателя. Пионером в этой области является компания BMW и ее система Valvetronic. Аналогичный принцип использован и в других системах:

  • Valvematic от Toyota;
  • VEL, Variable Valve Event and Lift System от Nissan;
  • MultiAir от Fiat;
  • VTI, Variable Valve and Timing Injection от Peugeot.

Схема системы Valvetronic

В системе Valvetronic изменение высоты подъема клапанов обеспечивает сложная кинематическая схема, в которой традиционная связь кулачок-коромысло-клапан дополнена эксцентриковым валом и промежуточным рычагом. Эксцентриковый вал получает вращение от электродвигателя через червячную передачу. Вращение эксцентрикового вала изменяет положение промежуточного рычага, который, в свою очередь, задает определенное движение коромысла и соответствующее ему перемещение клапана. Изменение высоты подъема клапана осуществляется непрерывно в зависимости от режимов работы двигателя.

Система Valvetronic устанавливается только на впускные клапаны.

Впускная система

Впускная система (другое наименование – система впуска) предназначена для впуска в двигатель необходимого количества воздуха и образования топливно-воздушной смеси. Термин «впускная система» появился с развитием конструкции двигателей внутреннего сгорания, особенно с появлением системы непосредственного впрыска топлива. Оборудование для питания двигателя воздухом перестало быть просто воздуховодом, а превратилось в отдельную систему.

В своей работе система впуска взаимодействует со многими системами двигателя, в том числе:

Взаимодействие перечисленных систем и еще ряда других систем обеспечивает система управления двигателем.

Для улучшения наполнения цилиндров воздухом, повышения мощности в конструкции системы впуска современных бензиновых и дизельных двигателей используется турбонаддув.

Впускная система имеет следующее общее устройство:

  • воздухозаборник;
  • воздушный фильтр;
  • дроссельная заслонка;
  • впускной коллектор;
  • впускные заслонки (на отдельных конструкциях двигателей);
  • соединительные патрубки;
  • конструктивные элементы системы управления двигателем.

Схема впускной системы

Воздухозаборник обеспечивает забор воздуха из атмосферы и представляет собой патрубок определенной формы.

Воздушный фильтр служит для очистки воздуха от механических частиц. Фильтрующий элемент изготавливается из специальной бумаги и размещается в отдельном корпусе. Фильтрующий элемент воздушного фильтра является расходным материалом, т.е. имеет ограниченный срок службы. В зависимости от условий эксплуатации автомобиля срок службы фильтрующего элемента может изменяться.

Дроссельная заслонка регулирует величину поступающего воздуха в соответствии с величиной впрыскиваемого топлива. На современных двигателях дроссельная заслонка приводится в действие с помощью электродвигателя и не имеет механической связи с педалью газа.

Впускной коллектор распределяет поток воздуха по цилиндрам двигателя и придает ему необходимое движение. Разряжение, возникаемое во впускном коллекторе используется в работе вакуумного усилителя тормозов, а также для привода впускных заслонок.

На двигателях с непосредственным впрыском топлива в дополнение к дроссельной заслонке устанавливаются впускные заслонки. Они обеспечивают процесс смесеобразования за счет разделения воздуха на два впускных канала. Один канал перекрывает заслонка, через другой – воздух проходит безпрепятственно. Впускные заслонки установлены на общем валу, который поворачивается с помощью вакуумного или электрического привода.

Работу впускной системы обеспечивает система управления двигателем. Конструктивные элементы системы управления двигателем, которые используются в работе системы впуска, можно разделить на три группы:

  • входные датчики;
  • блок управления;
  • исполнительные устройства.

К примеру, впускная система двигателя с непосредственным впрыском топлива имеет следующие датчики:

  • расходомер воздуха;
  • датчик температуры воздуха на впуске;
  • датчик положения дроссельной заслонки;
  • датчик давления во впускном коллекторе;
  • датчик положения впускной заслонки;
  • датчик положения клапана рециркуляции;
  • датчик давления в магистрали вакуумного усилителя тормозов.

Расходомер воздуха и датчик температуры воздуха на впуске служат для определения нагрузки на двигатель. На некоторых моделях двигателей расходомер воздуха не устанавливается. Его функции выполняет датчик давления во впускном коллекторе. При совместной установке расходомер воздуха и датчик давления во впускном коллекторе дублируют друг друга. Датчик давления во впускном коллекторе также используется в работе системы рециркуляции отработавших газов для расчета количества перепускаемых газов. Величина нагрузки двигателя определяется с помощью датчика температуры воздуха на впуске и дополнительного датчика атмосферного давления. Остальные датчики обеспечивают работу соответствующих систем.

Работой впускной системы управляют следующие исполнительные устройства:

  • блок управления дроссельной заслонкой;
  • электродвигатель привода впускных заслонок или клапан управления вакуумным приводом заслонок (на двигателе с непосредственным впрыском топлива);
  • запорный клапан системы улавливания паров бензина;
  • электромагнитный клапан системы рециркуляции отработавших газов.

Исполнительные устройства активирует блок управления двигателем.

Принцип работы впускной системы

Работа впускной системы основана на разности давлений в цилиндре двигателя и атмосфере, возникающей на такте впуска. Объем поступающего воздуха при этом пропорционален объему цилиндра. Величина поступающего воздуха регулируется положением дроссельной заслонки в зависмости от режима работы двигателя.

На двигателях с непосредственным впрыском топлива в дополнение к дроссельной заслонке работают впускные заслонки. Совместная работа дроссельной и впускных заслонок обеспечивает несколько видов смесеобразования:

  • послойное смесеобразование;
  • бедное гомогенное смесеобразование;
  • стехиометрическое гомогенное смесеобразование.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. При послойном смесеобразовании дроссельная заслонка большую часть времени открыта полностью. Заслонка прикрывается только для обеспечения разряжения, необходимого в работе системы улавливания паров бензина (продувка адсорбера), системы рециркуляции отработавших газов (перепуск отработавших газов во впускной коллектор) и вакуумного усилителя тормозов (создание необходимого разрежения). Впускные заслонки закрыты.

Стехиометрическое (легковоспламеняемое) гомогенное(однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. Дроссельная заслонка открывается в соответствии с требуемым крутящим моментом. Впускные заслонки открыты.

На бедной гомогенной смеси двигатель работает в промежуточных режимах. Дроссельная заслонка открывается также в соответствии с требуемым крутящим моментом. Впускные заслонки закрыты.

Впуск — дело важное

Равномерность распределения топливо-воздушной смеси по цилиндрам во многом зависит от впускного коллектора. Многие полагают, что внутренняя полировка коллектора позволяет уменьшить потери на впуске. Но сама по себе эта операция - вырванная страничка из большой книги и кардинально изменить ничего не может. Неравномерное распределение смеси по цилиндрам связано в первую очередь с конструктивными ошибками при проектировании коллекторов. Разная длина впускного тракта приводит к неоднородному наполнению цилиндров, причем баланс мощности по цилиндрам меняется в зависимости от того, какая заслонка карбюратора открыта. Достаточно примитивно (для впускного коллектора задне-приводного ВАЗа) Это выглядит так: при дросселировании на 1-й камере, а так же при работе карбюратора в режиме холостого хода - 1 и 4 цилиндры работают на более богатой смеси чем 2 и 3. При дросселировании на 2-й камере (режим max нагрузок) более обогащенная смесь поступает во 2 - 3 цилиндры; а 1 и 4 испытывают топливо воздушный "голод". Причина такой пульсации смеси по цилиндрам - неудачное расположение заслонок карбюратора над впускным коллектором. Убрав часть перегородок между соседними каналами убиваем 2-х зайцев:

1. Выравниваем длину каналов.
2. Под карбюратором появляется полость, в которой смесь перед попаданием во впускные каналы перемешивается, независимо от того на какой камере происходит дросселирование.

Блеск и Нищета впускного коллектора ...

Огромное значение также имеет совпадение окон карбюратора и впускного коллектора; впускного коллектора и головки. Смесь движется в каналах с высокой скоростью и ступеньки в местах стыка образуют мощные вихревые потоки, увеличивающие аэродинамические потери и препятствующие поступлению смеси в цилиндры. Убрав ступеньки в местах сопряжений карбюратора и впускного коллектора; впускного коллектора и головки, а так же отполировав коллектор и внутренние полости головки до зеркального блеска - расширяем диапазон крутящего момента и max мощности, причем чем выше обороты, тем результат более выражен.

Ступенька между текстолитовой прокладкой и впускным коллектором, характерная для большинства заводских коллекторов, создает дополнительное сопротивление потоку во впускном тракте.

Еще один способ оптимизации смесеобразования на штатном коллекторе - закрутить топливовоздушную смесь в больших диффузорах карбюратора, а затем продолжить эту подкрутку в каналах впускного коллектора. На рынок периодически попадают различные примитивные устройства, например гомогенизаторы (на жаргоне "турбинки"), которые монтируются под карбюратором и якобы улучшают процесс смесеобразования. Смесь действительно слегка подкручивается, но сам гомогенизатор перекрывает сечение впускного канала и является существенной помехой потоку. Так что от такой подкрутки больше вреда. Закрутить смесь не перекрывая, а в отдельных случаях даже увеличив сечение впускных каналов, технически гораздо сложнее, но это реально осуществимо. Это наше "секретное оружие" и тема для отдельного разговора.

Малые диффузоры с активными углами атаки, создающие вихревое движение воздушного потока в цилиндрах больших диффузоров.

На спортивных автомобилях, пока на них прочно не обосновался впрыск, использовалась другая схема - установка нескольких карбюраторов. Она дает существенное увеличение крутящего момента и растягивает его по всему диапазону - от низких до max оборотов, а так же увеличивает max мощность. Но общие законы работы с коллекторами, изложенные выше, работают и здесь. И при комплексном применении всех приемов - результаты блестящие.