Статьи по теме "Двигатель"

Куда девается масло

Проблема расхода масла достаточно распространена, но и путаницы с объяснением её причин, способов диагностики и методов борьбы предостаточно. Одна сказка "О замене колец" чего стоит! Но всё по порядку.

Итак, масло из двигателя может исчезать в следующих направлениях:

  1. Вытекать;
  2. Сгорать в цилиндрах двигателя.

Вытекание масла может происходить в двух направлениях - наружу, что, как правило, можно углядеть невооружённым взглядом, и внутрь – то есть масло попадает в охлаждающую жидкость. Это тоже легко обнаружить, открыв пробку радиатора или расширительный бачок и увидев там "сметану". Как правило в этих случаях не происходит заметного понижения уровня масла, в противном случае это вытекание видно ОЧЕНЬ хорошо, т.к. под машиной образуется огромное масляное болото (кстати, по-японски утечка масла звучит как "Абура море "). Вот это море и будет под машиной. Представьте себе, скажем литр масла, вылитый не в заливную горловину, а просто сверху на мотор - оно почти всё окажется под машиной.

Теперь второй вариант - сгорание масла в двигателе. Теоретически угар масла есть всегда. Это входит в принцип действия ДВС. Но на практике исправный двигатель современной конструкции при соблюдении интервала смены масла в 10т.км. вполне может обходиться без доливки масла. Это означает, что расход масла на 10т.км. не превышает 1л. ( как правило расстояние между рисками max и min на щупе соответствует прим. 1 л.). Из чего складывается расход масла, и какими путями оно попадает в цилиндры двигателя?

Первое - через плохое уплотнение цилиндр-поршень.
Второе - через пропускающие маслоотражательные колпачки.
Третье - через плохо работающий маслоотделитель системы вентиляции картера.

Теперь более подробно об этих процессах. В уплотнении цилиндр-поршень участвуют: поверхность цилиндра, которая должна быть по форме геометрически правильным цилиндром, и обязательно иметь на своей поверхности рисочки от хона для удержания масла! Если цилиндр будет изготовлен каким-либо способом без применения хона, т.е. будет иметь правильную форму, но без рисочек - такой мотор долго не просуществует, т.к. кольца будут работать на сухую и быстро износятся и они сами и цилиндры. Далее, в уплотнении участвуют кольца, которые по конструкции весьма сложны при всей их внешней бесхитростности. При установке они должны с определённым (и переменным по их длине) усилием прилегать к поверхности цилиндра. Третьим участником уплотнения является канавка в поршне для кольца, которая тоже изнашивается в процессе работы двигателя, и кольцо болтается в канавке по высоте. Невыполнение любого (даже одного) из этих условий приводит к проникновению масла в цилиндр и его сгоранию. Как правило, все участники уплотнения изнашиваются одновременно, но неодинаково. Именно поэтому замена одних только колец – операция дурная и почти бесперспективная. Бывают, правда, редкие исключения, но лишь подтверждающие правило. Например, сборная конструкция маслосъёмных колец (тонкие диски и расширитель) имеет не только преимущества, но и недостатки. При применении плохого масла вся эта конструкция теряет подвижность в результате закоксовывания, и расширитель не прижимает диски к поверхности цилиндра. Но в таком случае кольцо не изнашивается, т.к. оно не прижималось к поверхности. Достаточно всё почистить и собрать обратно. Тут есть ещё варианты, но это уже совсем тонкости.

Далее масло стекает по стержням клапанов. С впускных оно попадает в цилиндры и там сгорает, а также нарастает коксовой шубой на обратной стороне тарелок клапанов. С выпускных клапанов оно подхватывается выхлопными газами, тоже привнося свою лепту в задымлённость выхлопа. Масло по стержням клапанов стекает в результате износа и задубения маслоотражательных колпачков, а также в результате повышения зазора между стержнем клапана и направляющей втулкой. Изнашивается и стержень клапана в меньшей степени (на дизеле - очень сильно) и направляющая втулка. В результате стержень клапана так болтается во втулке, что с маслом не справится ни один самый лучший колпачок, т.к. он рассчитан только на продольное перемещение клапана, но не на осевое смещение.

Теперь о маслоотделителе. Это довольно простое устройство, представляющее собой лабиринт. Картерные газы вместе с масляным туманом поступают на вход лабиринта, "путаются " в нём, а масло оседает на стенках и через сливные отверстия стекает обратно в картер. Если сливные отверстия, да и сам лабиринт, забиваются "кизяком", то капельки масла попадают на впуск и далее в цилиндры. Но вышеупомянутый (не к ночи) "кизяк" образуется при изношенном двигателе при взаимодействии большого количества картерных газов, прорвавшихся через плохое уплотнение поршень-цилиндр. Так что забившаяся система вентиляции картера не причина повышенного расхода масла, а наоборот.

Теперь из практики. Основной вопрос - Что делать? (Кто виноват ? - выходит за пределы моей компетенции). ЕСЛИ расход масла на 10т.км. составляет примерно 2,5-3 л., то как правило проблема решается ЗАМЕНОЙ МАСЛООТРАЖАТЕЛЬНЫХ КОЛПАЧКОВ. Если расход СУЩЕСТВЕННО ВЫШЕ, то без полноценного ремонта НЕ ОБОЙТИСЬ. Как правило, автопроизводители указывают для определения необходимости капитального ремонта двигателя расход масла на 1т.км.-1л. При таком расходе масла эксплуатировать автомобиль практически очень тяжело, т.к. уж очень часто приходится доливать масло.

Если, несмотря на все намёки свыше, продолжать эксплуатацию, то возможны следующие варианты. Первый - при езде по городу мотор стуканёт, т.к. масло не будет долито вовремя, а ехать надо! Второй - при езде на большие расстояния с большим газом прогорит или поршень или клапан, т.к. кокс в цилиндрах со временем воспламенится, а он имеет очень высокую температуру горения.

Что может стучать в двигателе

-...Посмотрите - у меня коленвал стучит!
- И давно это у Вас?
- Да уже год так езжу!
- ???!
- Точно, коленвал, что же еще у меня может стучать?

Не ошибемся, если скажем, что посторонние шумы и стуки сопровождают автомобиль на протяжении значительной части его автомобильной «жизни». Сильные и слабые, глухие и звонкие - они не только раздражают слух и снижают комфорт.

Обычно эти звуки сигнализируют о неполадках в узлах и агрегатах. Источники звуков в автомобиле весьма многочисленны, но главные из них - ходовая часть, рулевое управление, трансмиссия, двигатель. В этом ряду двигатель занимает особое место. Значительные нагрузки на его детали носят знакопеременный периодический характер в соответствии с частотой вращения коленчатого вала. Не удивительно, что 3000 ударов за одну минуту или, к примеру, 30000 ударов за 10 минут одной детали по другой вполне могут привести к весьма неприятным последствиям.

В отношении стука, появившегося в двигателе, водителя чаще всего интересуют два вопроса: сколько еще можно так проехать и насколько сложным и дорогим может оказаться ремонт?

Последний вопрос важен и для механика-моториста, только сформулируем его иначе: в чем причина стука? Правильный ответ на этот главный вопрос легко расставит все на свои места - и возможность дальнейшей эксплуатации двигателя, и степень сложности предстоящего ремонта.

К сожалению, дать точный ответ на вопрос о том, что является причиной стука в конкретном случае, не всегда возможно. Даже моторист высокой квалификации (с большим опытом и отличным, прямо-таки «абсолютным» слухом), может ошибиться. Что уж говорить о его менее опытных коллегах и водителях?

Но цена ошибки слишком велика. Представьте: успокоенный тем, что ничего страшного нет, водитель включает музыку погромче, нажимает на газ и ... - через некоторое количество километров шатун пробивает блок цилиндров. Или: механик «приговорил» двигатель к капитальному ремонту, а разобрав его, убедился, что к самому двигателю (т.е. к его механической части) стук отношения не имеет.

Еще сложнее без разборки и проверки всех деталей и агрегатов двигателя ответить на вопрос, почему вообще возник стук? Конечно, известны случаи установки при сборке двигателя некачественных комплектующих, быстрый износ которых стал причиной стука. Но, как правило, дефекты деталей, вызывающие стук, - следствие нарушения правил эксплуатации двигателя, а также их естественный износ. Задача многократно усложняется в том случае, если дефекты деталей, вызывающие стук, появляются вследствие скрытых неисправностей других деталей или узлов двигателя.

В общем, возникновение моторных шумов и стуков - дело «темное», и выявить первопричину совсем непросто. Поэтому попробуем внести некоторую ясность. Именно некоторую, поскольку многообразие стуков и связанных с ними неисправностей столь велико, что описать их все просто невозможно. А вот сформулировать общие принципы, с помощью которых легче определить истинную причину, возможно. Но сначала надо выяснить...

Что такое стук?
В подавляющем большинстве случаев стук в двигателе возникает в зоне сопряжения деталей при увеличении зазора между ними выше некоторой критической величины. В условиях нормальной смазки и охлаждения деталей повышенная шумность возникает при зазоре примерно в два раза большем максимальной величины номинального зазора. Непосредственно стук выявляется при зазоре в сопряжении, приблизительно в три раза и более превышающем номинальный, причем чем больше зазор, тем сильнее стук.

Очевидно, стук - это удар одной детали по другой. А значит, и очень высокие нагрузки в местах их соударения. Не вдаваясь подробно в физику этих процессов, отметим, что ударные нагрузки постепенно разрушают сопрягаемые поверхности, причем тем быстрее, чем больше сила удара. А поскольку эта сила зависит от величины зазора, то с его увеличением скорость износа деталей возрастает. Другими словами, в большинстве случаев стук (читай - ударные нагрузки, зазор, износ) прогрессирует, т.е. становится все сильнее и сильнее.

Насколько быстро идет этот процесс, зависит от многих факторов: конструкции, материала, технологии изготовления деталей, действующих нагрузок, условий смазки, охлаждения и др. Поэтому некоторые узлы (к примеру, газораспределительный механизм) способны работать в изношенном состоянии со стуком многие тысячи километров. В других, напротив: после возникновения стука поломка деталей происходит через несколько сотен или даже десятков километров (кривошипно-шатунный механизм).

Иногда стук возникает и при нормальном зазоре в сопряжении деталей при отсутствии их явного износа. Причины такого стука связаны с очень большими нагрузками, перекосом и заеданием одной из деталей, снижением вязкости масла из-за перегрева или разбавления его иной жидкостью (например, топливом). В таких случаях после устранения неблагоприятных факторов стук пропадает, конечно, если сопряженные детали не успели получить заметных повреждений.

Так или иначе, но стук, появившийся в двигателе, - безотлагательный повод для диагностики. От верно поставленного диагноза зависит объем ремонтных работ: возможно, что для устранения стука необходимо снять и полностью разобрать двигатель, хотя совершенно нельзя исключить варианты, когда требуется только его частичная разборка, либо причина стука вообще не связана с двигателем.

Практика показывает: чтобы не ошибиться, мало знать причину возникновения стука. Не менее, а иногда и более важно знать...

От чего зависит стук?
Откроем какую-нибудь инструкцию по ремонту автомобиля и прочитаем: «...стук коренных подшипников коленчатого вала... глухого тона... лучше прослушивается...» И т.д. и т.п. Действительно, когда на СТО ремонтируется только одна модель автомобиля, подобные рекомендации помогут установить причину стука. А вот для совершенно разных машин хуже: особенности конструкции их двигателей являются причиной разных шумов и стуков при одинаковых неисправностях. Стук коренного подшипника у малолитражного «японца» вполне может оказаться звонче шатунного стука у 5-литрового «американца». Поэтому «звонкость» или «глухость» стука - понятия весьма относительные и могут быть приняты во внимание только как второстепенные признаки.

А какие же признаки главные? По нашему мнению, их несколько. Например, это характер стука - регулярный, с определенной частотой, или нерегулярный. Последний появляется эпизодически (через неравные промежутки времени), что не позволяет указать его частоту.

Параметры регулярных стуков всегда можно связать с частотой вращения коленчатого вала двигателя. Причем частота стуков может как совпадать, так и отличаться от частоты вращения коленвала.

Еще один параметр стука - интенсивность. В определенной степени этот параметр носит субъективный характер: кому-то может показаться, что двигатель практически не стучит, другому же данный стук слышится довольно сильным. Но главное здесь в другом - связь интенсивности стука с режимом работы двигателя.

Чем определяется режим работы двигателя, понятно - частотой вращения и нагрузкой. С ростом частоты вращения увеличиваются силы инерции возвратно-поступательно движущихся деталей (шатунно-поршневая группа, клапанный механизм), и если стук связан с их повреждением, то обычно он усиливается. Правда, при этом общий шум работающего двигателя может заглушать стук, поэтому часто не удается точно установить, усиливается конкретный стук с ростом частоты вращения или нет.

Увеличение нагрузки (открытие дроссельной заслонки) ведет к росту давления в цилиндрах и, соответственно, к возрастанию нагрузки на движущиеся детали, в первую очередь кривошипно-шатунного механизма и поршневой группы. Поэтому в большинстве случаев стук, связанный с дефектами этих деталей, усиливается с ростом нагрузки.

Читатель, наверное, заметил, что при описании стуков нам приходится употреблять слова «часто», «иногда», «в большинстве случаев». Действительно, многообразие конструкций двигателей - причина неоднозначного проявления стуков. Более того, степень повреждения «стучащих» деталей тоже может быть совершенно различной, тогда будет и стук стуку рознь.

Как показывает практика, на стук может заметно повлиять изменение подачи масла к различным соединениям деталей. К примеру, с ростом частоты вращения увеличивается давление масла и его подача, в том числе и к поврежденным «стучащим» деталям. Масло обладает демпфирующим эффектом, и с ростом частоты вращения некоторые стуки могут «затихать», даже несмотря на резкое увеличение действующих на детали сил.

В связи с этим особое значение имеет температура двигателя. Густое, холодное масло отлично держится в больших зазорах между уже изношенными и даже разбитыми деталями. При этом двигатель, на слух буквально разваливающийся на части в горячем состоянии, холодным может работать почти идеально.

Но зависимость интенсивности стука от температуры связана не только со смазкой. Вспомним, что целый ряд сопряженных деталей в двигателе изготовлены из металлов (бронзы, алюминиевых сплавов, стали, чугуна), имеющих разные коэффициенты температурного расширения. Естественно, величина зазора в сопряжениях деталей из разнородных металлов изменяется в зависимости от температуры.

Подобных соединений в двигателе не так много: «поршень - цилиндр», «поршень - поршневой палец», «распределительный вал - алюминиевая головка блока цилиндров» и «коленчатый вал - алюминиевый блок цилиндров». Сюда же можно отнести соединения типа «коромысло - ось», «клапан - бронзовая направляющая втулка», а также «клапан - головка блока». Что касается последнего соединения, заметим: при изменении температуры деталей меняется не только длина клапана, но и высота головки блока, вызывая существенное изменение зазора в приводе клапана.

Очевидно, все эти типы соединений могут оказаться источниками стуков, усиливающихся либо, напротив, затихающих при прогреве двигателя. На практике же вопрос об изменении интенсивности стука в зависимости от температуры часто является ключевым в поиске причины неисправности.

И последнее. Для правильной диагностики «стучащего» двигателя иногда имеет решающее значение, как изменяется стук в процессе эксплуатации. Одни стуки, раз возникнув, остаются практически неизменными долгое время и по характеру, и по интенсивности. Другие, напротив, быстро прогрессируют. По этому признаку обычно удается сузить круг возможных причин неисправности: если первые связаны чаще всего с износом в сопряжении двух деталей из твердых материалов (клапанный механизм), то вторые - с износом мягкого материала в паре с твердым (шатунные, коренные вкладыши, подшипники распределительного вала).

Теперь, зная факторы, приводящие к появлению стука и изменению его интенсивности, можно перейти к рассмотрению наиболее часто встречающихся стуков и причин, их вызывающих. Но об этом - в наших следующих публикациях.

При вращении коленвала силы инерции Ри и давления газов Рг прижимают шатун поочередно к разным сторонам шатунной шейки. Если зазор в шатунном подшипнике велик, возникает стук: 1 - шатун; 2 - шатунная шейка коленчатого вала.

Нагрев пары сопряженных деталей, из которых алюминиевая деталь - охватываемая, приводит к уменьшению рабочего зазора (вверху). Если алюминиевая деталь - охватывающая, зазор будет увеличиваться (внизу): алюминиевая деталь; стальная или чугунная деталь.

Что делать, если оборвался ремень грм

Зубчатый ремень в приводе газораспределительного механизма - непременный атрибут большинства двигателей современных автомобилей. Между тем еще каких-нибудь 20-30 лет назад в двигателестроении безраздельно господствовал цепной привод ГРМ. И отдельные попытки применения ремней встречались с недоверием и откровенным скептицизмом. Понадобились десятилетия и новые технологии, чтобы ременный привод стал доминировать. Хотя его преимущества совершенно очевидны. Низкая шумность, возможность упрощения конструкций двигателя и снижения его массы - веские причины для многих автопроизводителей, чтобы отдать предпочтение именно ременному приводу.

Вместе с тем однозначно говорить, что ремень лучше, нельзя. Цепь гораздо долговечнее. Цепной привод способен работать столько же, сколько мотор. А ремень - увы, нет.

Из-за этого некоторые фирмы продолжают разрабатывать и выпускать двигатели с цепным приводом, практически не требующим обслуживания (вспомним, что подавляющее большинство двигателей с цепным приводом имеют и автоматические натяжители цепи). Срок же службы ремня невелик и в среднем не превышает 60 тыс. км пробега. За простоту конструкции приходится расплачиваться обслуживанием привода. То есть периодически менять ремень, следить за его состоянием, подтягивать.

Только тогда можно быть спокойным, что ремень не подведет - не оборвется или не останется без зубьев. А происходит это обычно в самый неподходящий момент.

Если ремень оборвался
Обрыв и срезание зубьев ремня - самые распространенные отказы ременного привода. Почему это происходит, мы еще поговорим, но сначала о - неприятном.

Последствия обрыва ремня напрямую связаны с конструкцией двигателя. Весь вопрос в том, достают ли клапаны в открытом положении до днища поршня, когда последний находится в верхней мертвой точке (ВМТ). Если нет, то все в порядке: обрыв ремня не грозит катастрофой и достаточно просто заменить порванный ремень новым. Но «легко отделаться» удается редко. Современные моторы с многоклапанными головками, их камеры сгорания специальной формы, призванные улучшить мощностные, экономические и экологические характеристики двигателя, - все это противоречит глубоким выборкам (цековкам) в поршне под тарелки клапанов. Значит, при обрыве ремня клапаны непременно встретятся с поршнями...

Результат? В лучшем случае - деформация стержней клапанов. Между прочим, для замены (кстати, вместе с маслосъемными колпачками) загнувшихся в буквальном смысле слова клапанов необходим как минимум демонтаж головки блока цилиндров. Если обрыв ремня произошел на холостых оборотах - потребуется замена 2-3 клапанов; если на рабочих режимах, - вплоть до замены всех клапанов. Это как повезет.

Еще хуже, если треснут направляющие втулки. Это уже потребует ремонта головки блока.

Ну а больше всего неприятностей возникает при обрыве ремня у дизелей. Там хода клапанов при положении поршня в ВМТ практически нет - ведь камера сгорания дизеля имеет очень малый объем. Значит, жди поломки толкателей, распредвала, крышек его подшипников и даже деформации шатунов. И, не дай Бог, обрыв ремня случится при высокой частоте вращения! Если сломается какой-нибудь клапан, придется менять поршень, ремонтировать блок цилиндров, возможно, менять шатун и даже головку блока... Ремонт похлеще капитального!

Но даже если, по счастью, все цело и надо только заменить ремень, работы предстоит немало. На современном автомобиле к нему так просто не подобраться - под капотом все агрегаты довольно плотно «упакованы», иной раз и руки не просунешь. Нечего и думать о замене ремня где-нибудь «в пути». Без хорошего инструмента и подъемника с этой работой точно не справиться, да и опыт - не последнее дело.

Что случилось с ремнем?
Надежная работа ременного привода ГРМ возможна только при определенных условиях: на ремень не попадают масло и грязь, шкивы и ролики, по которым «ходит» ремень, находятся в хорошем состоянии, а сам ремень правильно натянут.

Чтобы лучше понять, почему именно эти условия так важны, надо повнимательнее присмотреться к конструкции зубчатого ремня. Она вроде бы достаточно проста. Основу ее составляет корд - прочные нити из стекловолокна. Внутренняя рабочая часть ремня - зубья - выполняется обычно из нейлона: он имеет высокую износостойкость и прочность при хорошей эластичности. Снаружи расположен «чулок» - слой резины толщиной 3-5 мм. Согласитесь, это чем-то напоминает автомобильную покрышку: прочный корд, износостойкий протектор (зубья)... Недаром многие знаменитые производители шин (Continental, Firestone, GoodYear, Kleber, Pirelli, Semperit) имеют в своей производственной программе и ремни ГРМ.

Ремни, применяемые или применявшиеся на двигателях автомобилей всего мира, весьма разнообразны по своим параметрам. К примеру, число зубьев может меняться в пределах 44-257, ширина ремней - от 13 до 34 мм, шаг зубьев - от 5 до 12,7 мм. Кроме того, насчитывается около 20 типов профилей зуба - от простого трапециевидного на старых моторах до сложного эвольвентного на современных. Вся эта информация приведена в каталогах основных производителей ремней - это, помимо уже упомянутых нами, Bosch, Dayco, Gates, Rofan и многие другие.

Исходя только из анализа конструкции уже можно определить, что случится с ремнем при тех или иных отклонениях от нормальных условий его работы.

Например, если через сальники просачивается масло, а через щели в соединениях кожуха летят пыль и грязь, то ремню, скорее всего, жить осталось недолго. Масло разрушает резину (она набухает и отслаивается от корда), а пыль, особенно в смеси с тем же маслом - прекрасный абразивный препарат, резко увеличивающий износ зубьев шкива и ремня (правда, более мягкие зубья ремня страдают меньше).

Изношенный по зубьям шкив вызывает перераспределение нагрузки - максимум ее приходится на зубья ремня в местах его захода и схода со шкива. Другие зоны нагружены меньше или не нагружены вовсе (ремень «не ложится» на шкив). Последствия очевидны - у основания зубьев появятся трещины, которые быстро приведут к отрыву зубьев. Менять в описанном случае придется не только старый ремень, но и поврежденный шкив. Иначе быстро погибнет новый ремень.

Немало неприятностей мы создаем сами себе, допуская ошибки при замене ремня. Очень распространена его перетяжка - видимо, некоторым механикам кажется, что чем сильнее натянуть ремень, тем лучше он будет работать. А то, что перетянутый ремень «воет» - ничего, дескать, приработается.

Это не так. Ведь прочность нитей корда ограничена. И чем сильнее натянут ремень, тем быстрее порвутся нити. То же самое произойдет, если ремень при хранении был очень сильно перегнут.

Ослабленный ремень тоже долго ходить не будет. Колебания его, возникающие в подобном случае, приводят к нерасчетным нагрузкам на зубья все там же - в местах схода и, особенно, захода на шкив (зубья ремня не попадают во впадины зубьев шкива). Подрез и последующий отрыв зубьев от основы неминуем.

Нежданные проблемы грозят тому, кто умудрится снять (или просто не поставить при замене ремня) отдельные детали кожуха. Один залетевший из-под колес «шальной» камень - и ремень мгновенно порван.

Рассеянность вообще-то опасна всегда. Иног-да при замене ремня забывают о его натяжных и паразитных (направляющих) роликах. А ведь многие автопроизводители (к примеру, VW) однозначно рекомендуют менять ролики одновременно с ремнем! И это понятно: подшипник ролика может начать подклинивать из-за износа или недостаточной смазки. Итог - перегрев наружного резинового слоя ремня, появление на нем сетки поперечных трещин. В дальнейшем - отслоение резины от корда и обрыв ремня.

Большое число неисправностей связано с повреждением фланцев шкивов, например, при их неаккуратном или неправильном демонтаже с валов. Деформированный фланец шкива работает как нож, постепенно все больше и больше подрезая края ремня. «Грызет» край ремня и неправильно поставленный или деформированный кожух.

Иногда из-за нарушения технологии ремонта или сборки двигателя шкивы оказываются расположенными в разных плоскостях. Эффект будет тот же, что и при деформации фланцев шкивов.

Из редких неисправностей в ременном приводе отметим случаи заклинивания распределительного вала из-за недостатка смазки. То же может произойти и с валиком водяного насоса при разрушении его подшипника (в конструкциях, где водяной насос приводится ремнем ГРМ). Резко возрастает усилие в приводе, и на ремне сразу срезаются 6-7 и более зубьев.

Неприятности с ременным приводом могут возникнуть и при весьма «загадочных» обстоятельствах. Допустим, ремонтируется двигатель, у которого ремень незадолго до этого менялся. Спрашивается, можно ли опять поставить тот же самый ремень? Можно, но только так, как он стоял до демонтажа. Если перепутать направление движения ремня (скажем, не пометив это направление перед снятием), ремень ходить долго не будет. Зубья, длительное время испытывавшие нагрузку в одну сторону, при изменении ее направления на обратное начинают «трещать» и срезаются. Вот такая маленькая тонкость...

Чтобы ремень ходил долго
За ремнем надо следить. И выполнять некоторые совсем несложные правила. Вот они. vГлавное - ремень должен быть правильно натянут. Как, насколько сильно его натянуть, можно прочитать в различных пособиях по ремонту, а также в отличной книге издательства Autodata « Ремни привода механизма газораспределения и навесных агрегатов двигателя».

Не менее важно, чтобы нормально работал механизм натяжения ремня. Особенно существенно это для двигателей с автоматическим натяжителем - из-за дефектов последнего ремень нередко оказывается ослабленным со всеми вытекающими последствиями. Кстати, дефект натяжителя часто появляется не сам по себе, а как следствие низкой квалификации механиков. Автор был свидетелем двух подобных случаев при замене ремня на двигателях Mitsubishi. В первом механик открыл зарядный штуцер и стравил масло из натяжителя, чтобы легче его сжать. Во втором - умудрился даже просверлить в натяжителе отверстие с той же целью. Результат одинаков - потребовался новый натяжитель. А стоило всего-навсего заглянуть в нужную книгу. И потратить немного времени на теорию вопроса.

Еще одно непременное условие нормальной работы ременного привода - легкость вращения всех валов. Совершенно очевидно, что если один из них вращается туго или с неравномерным усилием (заедает), то, прежде чем ставить новый ремень, надо устранить причину заедания.

Кроме того, важно убедиться, что нет подтеканий масла, в результате которых оно может попасть на ремень. Если такое случилось, надо немедленно устранить течь, тщательно вымыть ремень и шкивы от масла, а лучше всего - заменить ремень.

И последнее, самое простое правило: ременный привод всегда надо держать в чистоте.

Иначе рассчитывать на надежность и долговечность работы ремня не придется.

Ремень газораспределительного механизма устроен достаточно просто: 1 - нити корда из стекловолокна; 2 - нейлоновая рабочая часть (зубья); 3 - резиновый «чулок»

Подрез зубьев у основания часто возникает из-за слабого натяжения ремня или изношенного шкива

Обрыв из-за потери адгезии (прочности соединения) различных слоев ремня. Обычно возникает из-за длительного воздействия масла или топлива

Попадание посторонних предметов между ремнем и шкивом обычно приводит к «косому» обрыву

Статьи по теме